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Particle’s response
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Particle’s response
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Particle’s response
\<: E, E
Ey

t 1
n+l| ——
hw
" B o)

m Moved one electron one level up n — n+ 1

m Displaced a charge e by distance &; (2n + 1) (a§ reduced Bohr radius)
— Induced a dipole moment d = eg; (2n+ 1)

m Laser described by electric field

d=a-E

with polarisability tensor a
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Measuring media’s responses
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Measuring media’s responses

incoming light —»
reflected light <—

—> transmitted light

m Reflected light (red) — refractive index n
m Transmitted light (green) — extinction coefficient

R
SPEp
>

: E

2)
@ o)
N

S
CEX

U,

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 5/52



Measuring media’s responses

incoming light —»
reflected light <—

—> transmitted light

m Reflected light (red) — refractive index n
m Transmitted light (green) — extinction coefficient
m Both quantities are combined into the complex dielectric function

£(w) = (n+ ix)?
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Measuring media’s responses

incoming light —»
reflected light <—

—> transmitted light

m Reflected light (red) — refractive index n
m Transmitted light (green) — extinction coefficient
m Both quantities are combined into the complex dielectric function

£(w) = (n+ ix)?

Propagation of a wave: ¢(r) = ekver = ekn(@)re—kx()r
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Dielectric functions as fingerprint of
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Polarisability vs. Permittivity

Clausius—Mossotti relation

a(w) =3 Veoiggﬁ

Polarisability Permittivity
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Polarisability vs. Permittivity
Clausius—Mossotti relation

a(w) =3 Veoiggﬁ

Polarisability Permittivity

m Microscopic quantity

. m Macroscopic quantity
m Scales with volume V

(traditionally)
m Independent on system size

m Upscaling to the macroscopic
system
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Polarisability vs. Permittivity

Clausius—Mossotti relation

a(w) =3 Veoiggﬁ

Polarisability Permittivity

m Microscopic quantity = Macroscooi .
. pic quantity
m Scales with volume V (traditionally)
m Features due to the interaction g |ngependent on system size
between system particles are
not mapped via

Clausius—Mossotti

m Upscaling to the macroscopic
system
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Polarisability vs. Permittivity

Clausius—Mossotti relation

a(w) =3 Veozgz));ﬁ

Polarisability Permittivity

= Microscopic quantity m Macroscopic quantity

m Scales with volume V (traditiona”y)

m Features due to the interaction Independent on system size
between system particles are
not mapped via
Clausius—Mossotti

m Extensive quantity

m Upscaling to the macroscopic
system

m Intensive quantity
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Particle’s polarisability
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Particle’s polarisability
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Particle’s polarisability
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Particle’s polarisability
_ Coj
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m Resonance frequency 10
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Oscillator strength

m Oscillator strength

£ 2me
12 = 3 hz

m Amplitude of polarisability

(B2 — E1) |(1]P[2)[?
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Causality
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Causality
m Polarisability: real part Re a(w) and
imaginary part Im o(w)
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Causality

m Polarisability: real part Re o(w) and

imaginary part Im o(w) .
m Real and imaginary part are not independent f /\ /\ N
= A response function does not depend onthe ‘ \] \/ \/ \F
past o(t) = a(t)O(t) o
m Fourier transform

s /
o(w) = %TP / %dw’

m Separation into real and imaginary parts (using even and odd
functions) — Kramers—Kronig relation

Rea(w) = —73/

o0
o'Ima(w) |, 2 [ Rea(w')
e mate) =2 [ gk,

0
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Response functions with

frequencies
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Response functions with imaginary
frequencies
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Response functions with imaginary
frequencies
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Response functions with imaginary
frequencies
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Response functions with imaginary
frequencies
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Response functions with imaginary
frequencies

25
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KKR restricts response functions to the class of causal functions
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Dielectric function of water

AL .
= CRC

o J.E. Bertie et al. ||

« G.M. Hale et al.

+ U. Kaatze

= H. Hayashi et al.’

—This work 1

9JF, M. Bostrém, C. Persson, |. Brevik, R. Corkery, S. Y. Buhmann, and
D. F. Parsons: Full-Spectrum High-Resolution Modeling of the Dielectric
Function of Water, J. Phys. Chem. B 124, 3103 (2020).
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Dielectric function of water
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Dielectric function of water
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Alternative way

P A(l - @ C + wHy (w)By)
&1 - @2 Cp + 0 (@)BLJ? + [0 (0) By 2
Neg AywH, (w)By

#(0)= X G i (@) b+ [T (B

where we have replaced By with By(w) = ByH(w). The diclectric
function at complex frequency then becomes

Ay

N
iw) =1 .
cliw) =1+ kz, 1+ BywH (i) + BywiHa(iw) + Cr?

an

With the propertics we have discussed so far, we see that,
if @ > wy, H(w) vanishes and both €,(w) and &(w) recover the
usual form of the Lorentz oscillator provided Hi(w) — 1. On the
other hand, if © < wn, c2(@) vanishes altogether, as required. Addi-
tionally, for ¢(iw) to remain continuous at @ = wg, We require
1im{2y, [0iHa(iw)] = w, which is most casily imposed by assuming
wiH3(iw) = wy for @ < wp.

h regard to the fanctions Hi(w) and Hax(w), we need
them to remain real for imaginary frequencies. Furthermore, we
require Hy (@) to be symmetrical with respect to the transformation
@ - ~w, and conversely, we need Hy(w) to be an odd function so
that the whole satisfies H(-w) = H(w). These set of conditions may
be satisfied by the choice,

|
% | tanh , (2)
w

iy
”l(w):%(tanh = &““’“)

44 !
Ha(w) = ;”: (tnnh “"‘M“’ +tanh ¢ A*M“’"), a3)

°J. Luengo-Méarquez, F. Izquierdo-Ruiz, and L. G. MacDowell: Intermolecula
forces at ice and water interfaces: Premelting, surface freezing, and regelation,

J. Chem. Phys. 157, 044704 (2022).

Kramers—Kronig one cannot avoid the use of special functions with
1o simple amalytical form for e(iw).” In practice, the deviations
from Kramer-Kronig are very small. Figuire 7 (top) compares e(iw)
obtained in analytical form from Eq. (1 1), with the Kramers-Kronig
transformation of the parametric representation of k(w) computed
throughits relation with e () and €>(w). The two curves are clearly
very similar on the scale of the figure and differ at most by 3%.
In the same figure, we also show the results obtained from the
plain Lorentz model. The curves are almast identical for energies
above the first electronic excitation but differ significantly for loswer
energies. Thanks to the truncation of the Lorentz oscillators, the

22 T T T
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Matter-wave interferometry with large
molecules

Typical parameters:

Distances: Ly ~ Lo =~ 0.8m

y S(y) S(x,)  S(x,)
x L» Y
z

L

b) )

A

Detection

H D

C. Brand, JF et al., Ann. Phys (Berlin) 527, 580 2015

Grating: SiNy,
Period 100nm,
Thickness
10 — 100nm

\\\\\\\\\\ \" Molecule: Phthalocyanine,

m = 514u,
vV =
180 — 2507,
A=~ 1pm

Realisation in group of Prof. M. Arndt, U. Vienna.
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Polarisability density

m Interaction: Dipole acting on centre-of-mass

'D.F. Parsons, B.W. Ninham. J. Phys. Chem. A 113, 1141 (2009).
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Polarisability density

m Interaction: Dipole acting on centre-of-mass

m Distribute the dipole moment of the entire
molecule

m Transition to continuous density

2
n(f)Z%/eXp{—< g ;zy az)}

'D.F. Parsons, B.W. Ninham. J. Phys. Chem. A 113, 1141 (2009).
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Polarisability density

m Interaction: Dipole acting on centre-of-mass

m Distribute the dipole moment of the entire
molecule

m Transition to continuous density

1 x2 yz 22
r) = — —
m Gaussian distribution with main axis ay, ay
and az, determined by:

'D.F. Parsons, B.W. Ninham. J. Phys. Chem. A 113, 1141 (2009).
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Polarisability density

m Interaction: Dipole acting on centre-of-mass

m Distribute the dipole moment of the entire
molecule

m Transition to continuous density

= tepl- (X X2
M=y \2 2" 2
m Gaussian distribution with main axis ay, ay

and az, determined by:
m Volume of electron density’

'D.F. Parsons, B.W. Ninham. J. Phys. Chem. A 113, 1141 (2009).

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 16 /52



Polarisability density

m Interaction: Dipole acting on centre-of-mass

m Distribute the dipole moment of the entire
molecule

m Transition to continuous density

= tepl- (X X2
M=y \2 2" 2
m Gaussian distribution with main axis ay, ay

and az, determined by:

m Volume of electron density’
m Main axis due to static value a;;(0) = ga;

'D.F. Parsons, B.W. Ninham. J. Phys. Chem. A 113, 1141 (2009).
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Averaging the potential

m spatial density + dynamical polarisability a(r,w) = n(r)a(w)
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Averaging the potential
m spatial density + dynamical polarisability a(r,w) = n(r)a(w)
m Potential at each point of the molecule

Usp(ra+ R~ -0) = 22 [ deeen(@)Tr[R™" - a(ie) - R
0

Gra+R " o1+ R 0,i€)]
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Averaging the potential
m spatial density + dynamical polarisability a(r,w) = n(r)a(w)
m Potential at each point of the molecule

Usp(ra+ R~ -0) = 22 [ deeen(@)Tr[R™" - a(ie) - R
0

Gra+R " o1+ R 0,i€)]

m Rotation matrix R
m Casimir—Polder Potential

Ucp(ra) = /dQ/dSQ Ucp(ra+ R () - 0)
v
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Results of the finite-size effects

UCP(ZA CP ZA Z Cn (Z_A)

n=0

rel(ay 8 ay
2 ZA 4 \ zy
m Corrections in terms of a/z,4

(ratio between extension and
distance)

m Analogy to higher-order | ; -
(quadrupole, octopole, ...) ' : v

~ UZB(za)

Ucp/USH
1.5
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Summary of last lecture

m Field quantisation: field excitation addresses photons and media
excitations
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Summary of last lecture
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m Casimir—Polder potential
Ucp(ra) = ZL / d§§2tr a(lf) GO (ra, ra, /g)]

m Van-der-Waals potential

Uvaw(ra, rs) =

> [e.e]
25 [ dgettrlan(e)  Glra.rs. i) - ap(i6) - Glra, o i)
0

m Interpretation as virtual photon exchange (propagating virtua ‘\" |
photons) .
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Medium-assisted dispersion forces
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Pauli blocking

§ m Small distances (solvent -
molecule); Lennard—Jones
potential

o=e()°[(2)"
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Dielectric sphere in e field

. m Dielectric sphere &(w)

- P
- . M . and radius a
" \\_/ 9 ™ m external electric field

@ E = Eye, (far away
from sphere)

0J.D. JACKSON. classical electrodynamics, 3th edition, Walter de Gruyter (2002).
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Dielectric sphere in e field

m Maxwell’s continuity conditions:
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Dielectric sphere in e field

m Maxwell’s continuity conditions:

m tangential component of E:
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Dielectric sphere in e field

m Maxwell’s continuity conditions:

m tangential component of E:

m normal component of D:
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Dielectric sphere in e field

m Maxwell’s continuity conditions:
109
a ov

1 0%,

ial fE: — =T
[ ] tangentla componento 2 09

r=a r=a

m normal component of D:
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Dielectric sphere in e field

m Maxwell’s continuity conditions:

. 1 00; 1 00,
I fE —— — -0
m tangential component o a9, a 09|,
o} o}
m normal component of D: —&(w) 9%; = 0%,
or r=a or r=a
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m normal component of D: —&(w) 9%; = 0%,
or r=a or r=a
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Dielectric sphere in e field

m Maxwell’s continuity conditions:

. 1 00; 1 00,
fE: —— — =——
m tangential component o a9, a 09|,
o} o}
m normal component of D: —&(w) 9%; = 0%,
or r=a or r=a

m First: Ay = —Ey + Cy/a®and A = C;/a%'*" for | > 1
m Second: ¢(w)A; = —Eg — 2Cy/a° and (w)IA; = —(I +1)C;/ @2

for I > 1
m Green: accomplished when A;=C, =0
3 glw)—1 5
. . =—— F = 7 a°F
m Red: acc. when A; 2T e(@) 0 & Cy E(w)+za 0
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Dielectric sphere in e field

3
ntial inside: ®; = ————Eyr
m potential inside: ®; 2+ e(@) of COS ¥
: : f@)—1 3. 1
I 0, = —F E
m potential outside: ¢, of COS ¥+ o )+2a 072 cos
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Dielectric sphere in e field

o 3 _ 3
= potential inside: ®; = 5~ Eorcos ¥ — £ = 5 o
. o fw)—1 3. 1
m potential outside: ®, = —Eyrcos 9+ (@) T 5@ Eo 5 €08 ¥
_ _ 1 dcos® gw) -1 3
| of dipole: ¢ = —— =dmeo_ a8 E
m potential of dipole: ¢ yP— —d Treog(w) +2a 0
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Dielectric sphere in e field

3 3

il inside: & — E—-—_° FE
m potential inside: ®; 5 (o) Eorcos ¥ — E () +2°

. - glw) =1 5 1
m potential outside: ¢, = —Eqrcos ¥+ ()12 5@ Eo 5 cos ¥

_ _ 1 dcos® gw) -1 3

| of dipole: ¢ = —— =dmeo_ a8 E

m potential of dipole: ¢ yP— —d Treog(w) +2a 0

m Comparison with induced dipole: d = aE:
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Dielectric sphere in e field

__ 8 _ S E

2 + &(w) gw)+2 °
-1

m potential outside: ¢, = —Eprcos v+ i(La@Eo

() +2
EO:E0+Ed

m potential inside: ¢; = Egrcosd— Ej =

m potential of dipole: ¢ = — dcrc;s . c
0

m Comparison with induced dipole: d = aE: a = 41r¢
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Dielectric sphere in e field

3

| pO'[en’[IaI |nS|de d)j - — mEO

Egrcosd— Ej =

3
2+ &(w)
£(w) —1 3 1
m potential outside: ¢, = —Eprcos v+ m Eo— cos
Eo=Ey+ Eq4
1 dcos?
4mey 12

m potential of dipole: ¢ = — d = 41re E

m Comparison with induced dipole: d = aE: a = 47Tso

m Clausius—Mossotti relation: Connection between intensive and
extensive dielectric quantities
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Hard-sphere model

Johannes Fiedler

m Clausius—Mossotti relation
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Hard-sphere model

G (r,r’) | ® Clausius—Mossotti relation

/

r es(w) =1 3

=4
@ ﬂgofs(a))+2 s

m Add environmental medium &(w)
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Hard-sphere model

G (r,r’) | ® Clausius—Mossotti relation

/

r es(w) =1 3

=4
@ Tréofs(a))+2 s

m Add environmental medium &(w)
m Same calculation yields

Hard-sphere model

QAHs = 47T£0£(oo)£
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Real cavity model

m vacuum bubble Rz embedded in
medium &(w)

—
| RC
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Real cavity model

m vacuum bubble Rz embedded in
medium &(w)
m scattering process:

m reflection at the cavity’s
“ (w) boundary
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Real cavity model

S
G5V (r4,14) .
m vacuum bubble Rz embedded in

r
medium &(w)
m scattering process:
m reflection at the cavity’s
s(w) boundary

m transmission through the
boundary to point r +

back-reflection
ryg
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Real cavity model

ra

G (ra,r4)

Johannes Fiedler

m vacuum bubble Rz embedded in
medium &(w)
m scattering process:
m reflection at the cavity’s
boundary
m transmission through the
boundary to point r +
back-reflection
m Negligence of multiple
scattering
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Real cavity model

ryg

G (ra,ra)
r
e(w)
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Real cavity model

(S)
Gy (ra,ra) m transmission through boundary

r
G(r,ra,w) = %D(w)
x [a(g)l — b(q)v @ v] e
e{w) with
malq)=1/9+i/¢? —1/¢°
Iy m b(q)=1/9+3i/¢* —3/¢°

B g =[r—rae(wulw)w/c

BV=(r—ra)/|r—ra
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Real cavity model

m arrival and departure (Born series expansion)

(S) _ w?
G2 (rA7 ra, w) - (8(00) - 1)?G(r/\a r, w)G(ra Fa, OO)

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022

TR
Aot ™
7

<
@,
5

<
ETEY

U,

4 s

32/52



Real cavity model

m arrival and departure (Born series expansion)

(9) w?
G2 (rA,rA,OO) = (8(00) - 1)?G(rA,r,OO)G(r, rA,OO)
m Comparison with propagation in bulk medium

GL%)(ra, raco) = DZ(0)GS) (a, Fa, )
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Real cavity model

m arrival and departure (Born series expansion)

G = na G
2 (rA7 rA,OO) - (8(00) - )? (rA7 r, OO) (r7 rA,OO)
m Comparison with propagation in bulk medium
6L (ra, rac) = D?() Gl (Fa, ra, )
m With the transmission coefficient
/
1(20) [20h"(20) ] — 201 (20)] 1" (20)

bl [j(20) [24"(2)] -~ ) Lo @) W)
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Real cavity model

m transmission coefficient
i
1(20) | 201 (20)| — lz01 (20)) 1" (20)

u(@) [(20) 2]~ e(e) Lo 20) W12

D(w) =
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Real cavity model

m transmission coefficient
i
1(20) | 201 (20)| — lz01 (20)) 1" (20)

pteo) [i(20) 21 (2)] "~ efeo) 2ozl 1 (2)

D(w) =

m Taylor series expansion (wR:/c < 1)
_ 3¢(w)
() ~ 1+ 2¢(w)

3 &(w) [1 02(c)u(w) — Be(w)u(w) — 4e(w) — 1) (a)RC)2
10 [1+ 2¢(c)]?
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Real cavity model

m transmission coefficient for small cavity (Rc — 0)

 3g(w)
R =)
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Real cavity model

m transmission coefficient for small cavity (Rc — 0)

 3g(w)
R =)

m scattering Green tensor

G (ra, Fac) = Dz(w)Gg/)k(’A, ra, w)

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 34 /52



Real cavity model

m transmission coefficient for small cavity (Rc — 0)

 3g(w)
R =)

m scattering Green tensor
Gy (Fa, raw) = D?(00)Gigo) (Fa. Fa, )

m vdW potential

Uvaw (ra; Is) o ( 3e(i¢)

4
m) GA(IE)O(B(IE) tI’G(I’A, rs, if)G(I‘B, ra, If)
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Real cavity model

m transmission coefficient for small cavity (Rc — 0)

 3g(w)
R =)

m scattering Green tensor
Gy (Fa, raw) = D?(00)Gigo) (Fa. Fa, )

m vdW potential

: 4
Usan(ra.ra) o (ooes™) 4 ) @alE)araiE) e Gira, . i€)G(re. . )
- 2
cions(i€) = ( oy 1g ) )
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Scattering at a dielectric sphere

GO)(r, 1)
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Scattering at a dielectric sphere

m Dielectric sphere €5, radius Rs embedded
in medium &(w)

GO (r, 1)
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Scattering at a dielectric sphere

m Dielectric sphere €5, radius Rs embedded
in medium &(w)
m Reflection outside

GO (r, 1)
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Scattering at a dielectric sphere

m Dielectric sphere €5, radius Rs embedded
in medium &(w)
m Reflection outside

G®(r,r') | m Green function with k = /&(w)u(w)w/c
r/

iuk
G(r,r',w) = 47T

2/ +1

SN el
p==% I=0 m=0

[ —m)!
() S (BN, (k. ) ME (k. )

+BNP_(k,r) @ NP (k, r')]
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Scattering at a dielectric sphere

m Reflection coefficients

BM = — pksfi(2) [2s)i(2s)] — wskii(zs) [2ji(2))
ksh{D(2) [z5j(29)] — wshi(zs [ 20" (2)]
BV — _ pksji(Zs) [zj,(z)]' — uskji(2) [ZSjl(zS)]/

ksi(zs) [20(2)] — skt (2) [zsiz6))

Wlth zZ = kRs, Zs = ksRs and ks = \/ESHSOO/C
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Scattering at a dielectric sphere

m Reflection coefficients

BY — _ Hksf/( 2) [s)i(2s)]" — wskii(zs) [2i(2)] /
ukshf")(2) [zsii(25)] — ushii(zs | 20" (2)]

gV _ _ Hksi(Zs) [Zi(2)]" — uski(2) [zsi(Z))
isj(ze) [ 21" (2)] — kbl (2) [26ii(25))

Wlth zZ = kRs, Zs = ksRs and ks = w/fs[uSw/C
m small sphere limit R < ¢/w: only | = 1 contributes

2i wR\® us —u 2i wR\® &5 —¢
BV == — S BN == — S
1 3<@C)Ms+2u’ 1 3<@c>s
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Scattering at a dielectric sphere

m Taking coincidence limit r' — r

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022

IX
Aot ™
)

ei
\&,
N S

{GEN

U,

s

38/52



Scattering at a dielectric sphere

m Taking coincidence limit r' — r

m Comparison with Green tensor by propagating through bulk
medium GO (r, 0, w)

£s — € 0°
£s + 2¢ C?

G(r,r,w) = 41reneR° G(O)(r,O,oo) . G(O)(O, r, o)

4TR® s —
_T:s: Zl:x GO(r,rs, @) x Vs Vs x GO(rs, r.00)|
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Scattering at a dielectric sphere

m Taking coincidence limit r' — r

m Comparison with Green tensor by propagating through bulk
medium GO (r, 0, w)

£s — € 0°

G(r,r,e) = 4mege R . CZG(O)(r,O,oo)-G(O)(O,r,oo)
Es

4TR® s —
_TKZS-F Zl:x GOr,rs,00) x Vs Vs x GO(rs, 1 0)|

m excess polarisability and magnetizability

—€ _47TR3 Us — U

—4TreeR3 * =
+2£ Ps Mo Ms+2u
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Sphere in a cavity

GO (r,1')

r/
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Sphere in a cavity

m Dielectric sphere ¢, radius R
embedded in medium &(cw) with cavity

GO(r,r) ¢ =1 and radius R¢

r/
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Sphere in a cavity

m Dielectric sphere €5, radius R
embedded in medium &(cw) with cavity

GO(r,r) € = 1 and radius R¢
= m Reflection outside
e(w)
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Sphere in a cavity

m Dielectric sphere €5, radius R
embedded in medium &(cw) with cavity
GO(r,r) ¢ =1 and radius R¢
T m Reflection outside
m Green function with

= Ve(@u(w)w/c
G(r,r,w) ZZZ[Z 5mo]

P:l:/0m0

[B,”’Mfm(k, r) o M2 (K, r')

(I — m)!
I+ m)!
+BI'N], (k. r) & Np (k. )|
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Sphere in a cavity

m Reflection coefficients (three-layer system), for small R and R¢

2i w\3
B =5 (vérg)
g 1w uR®(us —1)/(2u + 1)

X
142 ps+2)u+1)+2(us — 1)(1 - wR/RE

-3 ()
1—¢ 9¢R3(es — 1)/(2e + 1)

3
17T 26 T (s +2)(26+ 1) + 2(es — 1)1 — )%/ R
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Sphere in a cavity

m Rewriting the reflection coefficients to polarisabilities

o _ gy O ( 3¢ )2 1
StC 7 7O e \2e+1) 1+ agas/(8m2e2RY)
1

3 2
* — * _"_
sio = PotPsh (2u+ 1) 1+ Bopsid) (B2 FE)
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Excess Polarisabilities

Onsager’s real cavity

o

381 2
* —
ons = a(2£1 + 1)
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Excess Polarisabilities

Onsager's real cavity Hard-sphere model
\_/
2 * 3 & — &1
3eq L = 4mege1@ ————
x HS 0€1
Qops = & £+ 2¢
Ons (251 +1 1
SEES
5@3
%"GE\AS

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 42 /52



Excess Polarisabilities

Onsager’s real cavity Hard-sphere model
N
(o) )
& — &4
3eq 2 GT-IS = 47T£0£1 33 _—
QAops = | 5= £+ 2¢
Ons (251 11 ) ad

Finite-size particle

(@
e

Ons
1+ 2aa/(8m2ede a3)

a?s = O(E +
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Excess Polarisabilities

Onsager's real cavity Hard-sphere model

o o

2 3 €~ &
o o 3eq g = 4mmepera o,
Ons 2eq + 1
x10710
Finite-size particle % s
- 0 E 13 —
\./ (2] b2
. I, %
* * Ons B . 5
. = O~ + o P 0
70T Y + 2a0/(8m2ede 1 a5) [e] B
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Casimir—Polder forces in layered media

€4 m Polarisable particle in centred layer &4
of thickness L

R
\qi S,)‘
7)

] i

2)
\&, “)
N

$
CEX

U,

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 44 /52



Casimir—Polder forces in layered media

€4 m Polarisable particle in centred layer &4
of thickness L

m Left and right enclosed by media &>+

ER
\q&: S/)‘
7)

UR
s

@,
&

T

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 44 /52



Casimir—Polder forces in layered media

€4 m Polarisable particle in centred layer &4
of thickness L

m Left and right enclosed by media eo+

m Three-layer system (well-known in
literature)

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 44 /52



Casimir—Polder forces in layered media

€4 m Polarisable particle in centred layer &4
of thickness L

m Left and right enclosed by media eo+

m Three-layer system (well-known in
literature)

m Results for different excess
polarisability models

IX
Aot ™
)

ei
\&,
N S

{GEN

U,

s

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 44 /52



Casimir—Polder forces in layered media

€4 m Polarisable particle in centred layer &4
of thickness L
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Casimir—Polder forces in layered media

X106 m Polarisable particle in centred layer ¢4

® |, of thickness L
o |, m Left and right enclosed by media &5

= ¥
] : : 5 m Three-layer system (well-known in

B = literature)
ol 777 m Results for different excess
I polarisability models

101 1016 1017

‘1»'2 . .
dwasy m System: ice - water - air
m Molecules: CHy
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Casimir—Polder forces in layered media

x10~10

A 5
\J,
[@] '1
--------------------- 3
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1=
9
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0% 1010 1007 1018
£[rads™!]

m Polarisable particle in centred layer ¢4
of thickness L

m Left and right enclosed by media eo+

m Three-layer system (well-known in
literature)

m Results for different excess
polarisability models

m System: ice - water - air
m Molecules: CH4 and CO»
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Casimir—Polder forces in layered media
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near-field interaction of dissolved greenhouse gases at ice and air interfaces,
Phys. Chem. Chem. Phys. 21, 21296 (2019).

'JF, D.F. Parsons et al., Impact of effective polarisability models on the
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Casimir—Polder forces in layered media

ice

«r M Methane: similar behaviour,
! &5 77 " different orders of magnitude
107 w W Attractive to water-ice interface
® i - repulsive from water-air
10! ~ff 10! ;
= interface
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=) i 2
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-103 // 7 -10%
ETel 107 22107 :5.1-I1u-"z[m_w-)

'JF, D.F. Parsons et al., Impact of effective polarisability models on the
near-field interaction of dissolved greenhouse gases at ice and air interfaces,
Phys. Chem. Chem. Phys. 21, 21296 (2019).
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Casimir—Polder forces in layered media

m Methane: similar behaviour,

ice air

10 - 100 different orders of magnitude
I_I ~m Attractive to water-ice interface
o " repulsive from water-air
o ®. u interface
% : m Carbon dioxide: change from
-w! -10! repulsion to attraction at the

water-air interface for
finite-size particles
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'JF, D.F. Parsons et al., Impact of effective polarisability models on the
near-field interaction of dissolved greenhouse gases at ice and air interfaces,
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Casimir—Polder forces in layered media

m Methane: similar behaviour,

i§‘§' i different orders of magnitude
" I_I e T Attractlive to water-ice ipterface
repulsive from water-air

o . u interface
g m Carbon dioxide: change from
S -10! repulsion to attraction at the

0P Y ' . water-air interface for

@E ? finite-size particles
-1 w@ TERTRTE %fiwz[nrm“ m Methane will be captured;

Carbon dioxide released’

'JF, D.F. Parsons et al., Impact of effective polarisability models on the
near-field interaction of dissolved greenhouse gases at ice and air interfaces,
Phys. Chem. Chem. Phys. 21, 21296 (2019).
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Stabilisation of gas hydrates

NN

wet
surface;

Free energy per unit area F[Jm™?]
- CHA_st
Seel_ =GO,

10° 0!
Film thickness d[A)

'D.F. Parsons, JF, et al. Dispersion Forces Stabilize Ice Coatings at Certain
Gas Hydrate Interfaces That Prevent Water Wetting,
ACS Earth Space Chem. 3, 1014 (2019).
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m Hydyrates: ice + gas
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Stabilisation of gas hydrates

m Hydyrates: ice + gas

Free energy per unit area F[Jm™?]

m Modelling via Lorentz—Lorenz esn S
e = 120 with
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Film thickness d[A]

'D.F. Parsons, JF, et al. Dispersion Forces Stabilize Ice Coatings at Certain
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Stabilisation of gas hydrates

m Hydyrates: ice + gas == e enegy pes it v FlJ
m Modelling via Lorentz—Lorenz su‘.‘.}:\w
& = 120 with N
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icet2 N 3 surface

m Product of reflection coefficients T

Film thickness d[A]
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Gas Hydrate Interfaces That Prevent Water Wetting,
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Stabilisation of gas hydrates

m Hydyrates: ice + gas
m Modelling via Lorentz—Lorenz
£ = % with
_ Eicet1 Nyp + 4oy Nm
€iget2 Nj 3
m Product of reflection coefficients

EH — Ejce EW — Ejce
EH + Eice EW + Eice

Fal32 =

m Stable ice layers for CO, and N>
hydrates of 3-4 nm thickness

'D.F. Parsons, JF, et al. Dispersion Forces Stabilize Ice Coatings at Certain
Gas Hydrate Interfaces That Prevent Water Wetting,

ACS Earth Space Chem. 3, 1014 (2019).
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Effects of a solvent

Screening of wave function restricts volume V™: a — ol

Transmission through boundaries cavity models a — o*

Absorption via propagation ???
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Screened non-retarded vdW

C* 3 o
Uaw(d) =~ g C6 = 1671255/ O(A(g)((l'J;‘B)(ISC)d"f

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 49 /52



Screened non-retarded vdW

C; o 3 7a;(i§)ag(i§)d§

d6 T 1em3es e2(i)

Uvaw(d) =

m Can we find away to approximate Cg with the free-space
CG 167T3€2 faA I§ aB(If)dff;
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Screened non-retarded vdW

Cs o B 7az(i§)ag(i§)d§

Uyaw(d) = —=2 = :
dW( ) db 6 167T3£§ J 82(,5)

m Can we find away to approximate Cg with the free-space
CG 167T3£2 faA I§ a3(l§)d§9

m Single-point Gauss quadrature rule / = [ f(x)g(x)dx = f(xo)mo
0

m Series of momenta /; = [ x'g(x)dx — my =y and xo = I/ Iy

Iy fan(ian(iE)dg
J5* an(i)an(i€)dg
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Averaged mean-frequencies

TABLE |. Average main-frequencies @ (¢V') for different molecule pairs. The corresponding parameters for the polarizabilities
are taken from Refs. 18 and 40.

CH4 NO; CO» co N:0 O3 0, N» H»S NO

CHy 11.4 12,6 12.6 12.2 12.3 12.7 13.2 12.8 10.3 12.8
NO; 12.6 142 14.3 13.7 13.9 14.4 15.0 14.4 113 14.5
CO; 12.6 143 14.3 13.7 14.0 14.4 15.0 14.4 114 14.5

CO 12.2 13.7 13.7 13.1 13.4 13.8 14.4 13.8 11.0 13.9
N,O 12.3 13.9 13.9 134 136 14.0 14.7 14.0 11.1 14.1
0O 12.7 14.4 14.4 138 14.0 145 15.2 14.4 114 14.6
(e} 13.2 150 15.0 14.4 14.7 152 15.9 15.1 119 152
N2 12.8 14.4 14.4 13.8 14.0 14.5 15.1 14.4 115 14.6

HaS 10.3 113 114 11.0 11.1 114 11.9 11.5 9.3 11.5
NO 12.8 14.5 14.5 13.9 14.1 14.6 152 14.6 11.5 14.7
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CHy 11.4 12,6 12.6 12.2 12.3 12.7 13.2 12.8 10.3 12.8
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CO 12.2 13.7 13.7 13.1 13.4 13.8 14.4 13.8 11.0 13.9
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0O 12.7 14.4 14.4 138 14.0 145 15.2 14.4 114 14.6
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Averaged mean-frequencies

TABLE |. Average main-frequencies @ (¢V') for different molecule pairs. The corresponding parameters for the polarizabilities
are taken from Refs. 18 and 40.

CH4 NO; CO» co N:0 O3 0, N» H»S NO

CHy 11.4 12,6 12.6 12.2 12.3 12.7 13.2 12.8 10.3 12.8
NO; 12.6 142 14.3 13.7 13.9 14.4 15.0 14.4 113 14.5
CO; 12.6 143 14.3 13.7 14.0 14.4 15.0 14.4 114 14.5

CO 12.2 13.7 13.7 13.1 13.4 13.8 14.4 13.8 11.0 13.9
N,O 12.3 13.9 13.9 134 136 14.0 14.7 14.0 11.1 14.1
0O 12.7 14.4 14.4 138 14.0 145 15.2 14.4 114 14.6
(e} 13.2 150 15.0 14.4 14.7 152 15.9 15.1 119 152
N2 12.8 14.4 14.4 13.8 14.0 14.5 15.1 14.4 115 14.6

HaS 10.3 113 114 11.0 11.1 114 11.9 11.5 9.3 11.5
NO 12.8 14.5 14.5 13.9 14.1 14.6 152 14.6 11.5 14.7

m Typically larger than 10 eV
m Approximation: £(ic) ~ Re &(w)
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Screening effects

SERS
'JF et al. Effective screening of medium-assisted van der Waals mterachon@
between embedded particles, J. Chem. Phys. 154, 104102 (2021).
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Screening effects

m Screened vdW U,qw(d) = —% with

C A yres yres
CG = [Re 5(5)]2 ( Vfree)A ( Vfree)B

'JF et al. Effective screening of medium-assisted van der Waals interaction
between embedded particles, J. Chem. Phys. 154, 104102 (2021).
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Screening effects

m Screened vdW U,qw(d) = — % with

d6
Cr — Cs ( yres ) ( vres )
6 [Re 5(5)]2 Vfree A Vfree B
m Screened Coulomb Ug(d) = 47535(0)%3

'JF et al. Effective screening of medium-assisted van der Waals interaction
between embedded particles, J. Chem. Phys. 154, 104102 (2021).
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Screening effects

m Screened vdW U,qw(d) = —% with

CG VreS VreS
CG = [Re &_(5)]2 ( Vfree)A < VfI‘CC)B
1 Q
41re0e(0) d

m Screened Coulomb Ug(d) =

m Interesting fact about water: £(0) ~ 80 and [Re &(@)]? ~ 2
— Screening of Coulomb force 40 times stronger than screening of
vdW forces

'JF et al. Effective screening of medium-assisted van der Waals interaction A_
between embedded particles, J. Chem. Phys. 154, 104102 (2021).
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Summary

m Introduced concepts of macroscopic Quantum Electrodynamics
m Dispersion forces as the exchange of virtual photons

m Retardation effects
m Cavity effects in medium-assisted dispersion forces
m Screening of dispersion forces

m Applicable to all non-covalent interactions
m Many-body effects (E.g. two particles in front of a surface)
m Collective optical effects (E.g. superradiance, entanglement)

Johannes Fiedler The origin of van-der-Waals forces 29th November 2022 52/52



	Particle's responses
	Finite-size effects
	Particles embedded in a medium
	Clausius–Mossotti relation
	Hard-sphere model
	Real cavity model
	Scattering at a dielectric sphere
	Some systems

	Effective screening of vdW forces

