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Moved one electron one level up n → n + 1
Displaced a charge e by distance a∗

0 (2n + 1) (a∗
0 reduced Bohr radius)

→ Induced a dipole moment d = ea∗
0 (2n + 1)

Laser described by electric field

d = ααα · E

with polarisability tensor ααα
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incoming light

reflected light

transmitted light

Reflected light (red) → refractive index n
Transmitted light (green) → extinction coefficient κ
Both quantities are combined into the complex dielectric function

ε(ω) = (n + iκ)2

Propagation of a wave: φ(r) = eik
√εr = eikn(ω)re−kκ(ω)r
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Dielectric functions as fingerprint of
matter
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Polarisability vs. Permittivity
Clausius–Mossotti relation

α(ω) = 3Vε0
ε(ω)− 1
ε(ω) + 2

Polarisability

Microscopic quantity
Scales with volume V
Features due to the interaction
between system particles are
not mapped via
Clausius–Mossotti
Extensive quantity

Permittivity

Macroscopic quantity
(traditionally)
Independent on system size
Upscaling to the macroscopic
system
Intensive quantity
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Particle’s polarisability

α0(ω) =
∑

j

c0j

ω2
0j −ω2 − iγj0ω

Resonance frequency
ω0j =

1
ℏ

[
⟨j | ĤA |j⟩ − ⟨0| ĤA |0⟩

]
Amplitude

c0j =
2|d0j |2
ℏω0j

Transition dipole moment
d0j = e ⟨0| r̂ |j⟩

Linewidth

γ0j =
ω3

0j |d0j |2
3ℏπε0c3

Natural broadening due to the interactions with the quantum
vacuum
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Oscillator strength

Oscillator strength

f12 =
2
3

me

ℏ2 (E2 − E1) |⟨1| r̂ |2⟩|2

Amplitude of polarisability

c0j =
2
∣∣d0j

∣∣2
ℏω0j
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Causality

Polarisability: real part Reα(ω) and
imaginary part Imα(ω)
Real and imaginary part are not independent
A response function does not depend on the
past α(t) = α(t)Θ(t)
Fourier transform

α(ω) = 1
iπP

∞∫
−∞

α(ω′)
ω−ω′dω

′

Separation into real and imaginary parts (using even and odd
functions) → Kramers–Kronig relation

Reα(ω) = 2
πP

∞∫
0

ω′Imα(ω)
ω′2 −ω2

dω′ , Imα(ω) = −2
π

∞∫
0

Reα(ω′)

ω′2 −ω2
dω′
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Response functions with imaginary
frequencies

α(iξ) = 2
π

∞∫
0

ωImα(ω)
ω2+ξ2 dω

Imα(iξ) = 0
monotonically decreasing
Imα(ω 7→ 0) 7→ 0

Reα(ω), Imα(ω),α(iω) 7→ 0
for ω 7→ ∞

0.01 0.1 1 10
-1

-0.5

0

0.5

1

1.5

2

2.5

KKR restricts response functions to the class of causal functions
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Dielectric function of water

0JF, M. Boström, C. Persson, I. Brevik, R. Corkery, S. Y. Buhmann, and
D. F. Parsons: Full-Spectrum High-Resolution Modeling of the Dielectric
Function of Water, J. Phys. Chem. B 124, 3103 (2020).
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Matter-wave interferometry with large
molecules

C. Brand, JF et al., Ann. Phys. (Berlin) 527, 580 (2015)

Typical parameters:
Distances: L1 ≈ L2 ≈ 0.8m

Grating: SiNx ,
Period 100nm,
Thickness
10 − 100nm

Molecule: Phthalocyanine,
m = 514u,
v =
180 − 250m

s ,
λ ≈ 1pm

Realisation in group of Prof. M. Arndt, U. Vienna.
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Polarisability density

Interaction: Dipole acting on centre-of-mass

Distribute the dipole moment of the entire
molecule
Transition to continuous density

η(r) = 1
N exp

{
−
(

x2

a2
x
+

y2

a2
y
+

z2

a2
z

)}

Gaussian distribution with main axis ax , ay
and az , determined by:

Volume of electron density1

Main axis due to static value αii(0) = gai

1D.F. Parsons, B.W. Ninham. J. Phys. Chem. A 113, 1141 (2009).
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Averaging the potential
spatial density + dynamical polarisability ααα(r ,ω) = η(r)ααα(ω)

Potential at each point of the molecule

ŨCP(rA + R−1 · ϱϱϱ) = ℏμ0

4π

∞∫
0

dξ ξ2η(ϱϱϱ)Tr
[
R−1 · ααα(iξ) · R

·G(rA + R−1 · ϱϱϱ, rA + R−1 · ϱϱϱ, iξ)
]

Rotation matrix R
Casimir–Polder Potential

UCP(rA) =

∫
dΩ
∫
V

d3ϱ ŨCP(rA + R−1(Ω) · ϱϱϱ)
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ŨCP(rA + R−1 · ϱϱϱ) = ℏμ0

4π

∞∫
0

dξ ξ2η(ϱϱϱ)Tr
[
R−1 · ααα(iξ) · R

·G(rA + R−1 · ϱϱϱ, rA + R−1 · ϱϱϱ, iξ)
]

Rotation matrix R
Casimir–Polder Potential

UCP(rA) =

∫
dΩ
∫
V
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Results of the finite-size effects

UCP(zA) = Udip
CP(zA)

∞∑
n=0

cn

(
a
zA

)n

≈ Udip
CP(zA)

[
1 +

1
2

(
a
zA

)2

+
3
4

(
a
zA

)4
]

Corrections in terms of a/zA
(ratio between extension and
distance)
Analogy to higher-order
(quadrupole, octopole, ...) 1

1.5

2 3

UCP/U
dip
CP

zA/R
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Summary of last lecture

Field quantisation: field excitation addresses photons and media
excitations
Casimir–Polder potential

UCP(rA) =
ℏμ0

2π

∞∫
0

dξ ξ2 tr
[
ααα(iξ) · G(S)(rA, rA, iξ)

]
Van-der-Waals potential

UvdW (rA, rB) =

−ℏμ2
0

2π

∞∫
0

dξ ξ4 tr [αααA(iξ) · G(rA, rB, iξ) · αααB(iξ) · G(rB, rA, iξ)]

Interpretation as virtual photon exchange (propagating virtual
photons)
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Medium-assisted dispersion forces

ε(ω)
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Pauli blocking
V
/ε

r

rm
−1

Small distances (solvent -
molecule); Lennard–Jones
potential

V (r) = ε
( rm

r

)6
[( rm

r

)6
− 2
]

Repulsive Force (Pauli
blocking)
Particle embedded in a cavity
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Dielectric sphere in e field

a
z

P

ϑ

r

ε(ω)

E0 E0

Dielectric sphere ε(ω)
and radius a
external electric field
E = E0ez (far away
from sphere)

Potentials

inside: Φi =
∑∞

l=0 Al r lPl(cosϑ)
outside: Φo =

∑∞
l=0

[
Bl r l + Cl r−(l+1)

]
Pl(cos(ϑ)

Boundary condition (z → ∞): Φ → −E0z = −E0r cosϑ

→ B1 = −E0 and Bl = 0 for l > 1

0
J.D. JACKSON. classical electrodynamics, 3th edition, Walter de Gruyter (2002).
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Dielectric sphere in e field

Maxwell’s continuity conditions:

tangential component of E :

−1
a

∂Φi

∂ϑ

∣∣∣∣
r=a

= −1
a

∂Φo

∂ϑ

∣∣∣∣
r=a

normal component of D:

−ε(ω) ∂Φi

∂r

∣∣∣∣
r=a

= − ∂Φo

∂r

∣∣∣∣
r=a

First: A1 = −E0 + C1/a3 and Al = Cl/a2l+1 for l > 1
Second: ε(ω)A1 = −E0 − 2C1/a3 and ε(ω)lA1 = −(l + 1)Cl/a2l+1

for l > 1
Green: accomplished when Al = Cl = 0

Red: acc. when A1 = − 3
2 + ε(ω)E0 & C1 =

ε(ω)− 1
ε(ω) + 2

a3E0
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Second: ε(ω)A1 = −E0 − 2C1/a3 and ε(ω)lA1 = −(l + 1)Cl/a2l+1

for l > 1

Green: accomplished when Al = Cl = 0

Red: acc. when A1 = − 3
2 + ε(ω)E0 & C1 =

ε(ω)− 1
ε(ω) + 2

a3E0
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Dielectric sphere in e field

potential inside: Φi = − 3
2 + ε(ω)E0r cosϑ

→ Ei =
3

ε(ω) + 2
E0

potential outside: Φo = −E0r cosϑ+
ε(ω)− 1
ε(ω) + 2

a3E0
1
r2 cosϑ

Eo = E0 + Ed

potential of dipole: ϕ =
1

4πε0
d cosϑ

r2 → d = 4πε0
ε(ω)− 1
ε(ω) + 2

a3E0

Comparison with induced dipole: d = αE :

α = 4πε0
ε(ω)− 1
ε(ω) + 2

a3

Clausius–Mossotti relation: Connection between intensive and
extensive dielectric quantities
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Hard-sphere model
Clausius–Mossotti relation

α = 4πε0
εS(ω)− 1
εS(ω) + 2

R3
s

Add environmental medium ε(ω)
Same calculation yields
Hard-sphere model

αHS = 4πε0ε(ω)
εS(ω)− ε(ω)
εS(ω) + 2ε(ω)R3

s
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Real cavity model

rA RC

ε(ω)

vacuum bubble RC embedded in
medium ε(ω)

scattering process:

reflection at the cavity’s
boundary
transmission through the
boundary to point r +
back-reflection
Negligence of multiple
scattering
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Real cavity model

rA

ε(ω)

r
G

(S)
2 (rA, rA)

transmission through boundary

G(r , rA,ω) =
μ(ω)q

4π D(ω)

× [a(q)I − b(q)v ⊗ v] eiq

with
a(q) = 1/q + i/q2 − 1/q3

b(q) = 1/q + 3i/q2 − 3/q3

q = |r − rA|
√
ε(ω)μ(ω)ω/c

v = (r − rA) / |r − rA|
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Real cavity model
arrival and departure (Born series expansion)

G(S)
2 (rA, rA,ω) = (ε(ω)− 1)

ω2

c2 G(rA, r ,ω)G(r , rA,ω)

Comparison with propagation in bulk medium

G(S)
2 (rA, rAω) = D2(ω)G(S)

bulk (rA, rA,ω)

With the transmission coefficient

D(ω) =
j1(z0)

[
z0h(1)

1 (z0)
]′
− [z0j1(z0)]

′ h(1)
1 (z0)

μ(ω)
[
j1(z0)

[
zh(1)

1 (z)
]′
− ε(ω) [z0j1(z0)]

′ h(1)
1 (z)

]
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Real cavity model
transmission coefficient

D(ω) =
j1(z0)

[
z0h(1)

1 (z0)
]′
− [z0j1(z0)]

′ h(1)
1 (z0)

μ(ω)
[
j1(z0)

[
zh(1)

1 (z)
]′
− ε(ω) [z0j1(z0)]

′ h(1)
1 (z)

]

Taylor series expansion (ωRc/c ≪ 1)

D(ω) ≈ 3ε(ω)
1 + 2ε(ω)

− 3
10
ε(ω)

[
10ε2(ω)μ(ω)− 5ε(ω)μ(ω)− 4ε(ω)− 1

)
[1 + 2ε(ω)]2

(ωRC

c

)2
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Real cavity model
transmission coefficient for small cavity (RC → 0)

D(ω) = 3ε(ω)
1 + 2ε(ω)

scattering Green tensor

G(S)
2 (rA, rAω) = D2(ω)G(S)

bulk (rA, rA,ω)

vdW potential

UvdW (rA, rB) ∝
(

3ε(iξ)
2ε(iξ) + 1

)4

αA(iξ)αB(iξ) tr G(rA, rB, iξ)G(rB, rA, iξ)

αOns(iξ) =
(

3ε(iξ)
2ε(iξ) + 1

)2

α(iξ)
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Scattering at a dielectric sphere

ε(ω)

r′

r
G(S)(r, r′)

Rs
εs

Dielectric sphere εs, radius Rs embedded
in medium ε(ω)
Reflection outside
Green function with k =

√
ε(ω)μ(ω)ω/c

G(r , r ′,ω) = iμk
4π

×
∑
p=±

∞∑
l=0

l∑
m=0

[2 − δm0]
2l + 1
l(l + 1)

×(l − m)!

l + m)!

[
BM

l Mp
lm(k , r)⊗ Mp

lm(k , r
′)

+BN
l Np

lm(k , r)⊗ Np
lm(k , r

′)
]
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Scattering at a dielectric sphere
Reflection coefficients

BM
l = − μks jl(z) [zs jl(zs)]

′ − μskjl(zs) [zjl(z)]
′

μksh(1)
l (z) [zs jl(zs)]

′ − μskjl(zs

[
zh(1)

l (z)
]′

BN
l = − μks jl(zs) [zjl(z)]

′ − μskjl(z) [zs jl(zs)]
′

μks jl(zs)
[
zh(1)

l (z)
]′
− μskh(1)

l (z) [zs jl(zs)]
′

with z = kRs, zs = ksRs and ks =
√εsμsω/c

small sphere limit R ≪ c/ω: only l = 1 contributes

BM
1 =

2i
3

(√εμωR
c

)3 μs − μ
μs + 2μ , BN

1 =
2i
3

(√εμωR
c

)3 εs − ε
εs + 2ε
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Scattering at a dielectric sphere
Taking coincidence limit r ′ → r

Comparison with Green tensor by propagating through bulk
medium G(0)(r ,0,ω)

G(r , r ,ω) = 4πε0εR3 εs − ε
εs + 2ε

ω2

c2 G(0)(r ,0,ω) · G(0)(0, r ,ω)

−4πR3

μ
μs − μ
μs + 2μ G(0)(r , rs,ω)×∇s · ∇s × G(0)(rs, r ,ω)

∣∣∣
rs=0

excess polarisability and magnetizability

α⋆s = 4πε0εR3 εs − ε
εs + 2ε , β

⋆
s =

4πR3

μ0

μs − μ
μs + 2μ
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Scattering at a dielectric sphere
Taking coincidence limit r ′ → r
Comparison with Green tensor by propagating through bulk
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Sphere in a cavity

ε(ω)

r′

r
G(S)(r, r′)

RC
εs

R

Dielectric sphere εs, radius R
embedded in medium ε(ω) with cavity
ε = 1 and radius RC

Reflection outside
Green function with
k =

√
ε(ω)μ(ω)ω/c

G(r , r ′,ω) = iμk
4π

∑
p=±

∞∑
l=0

l∑
m=0

[2 − δm0]
2l + 1
l(l + 1)

×(l − m)!

l + m)!

[
BM

l Mp
lm(k , r)⊗ Mp

lm(k , r
′)

+BN
l Np

lm(k , r)⊗ Np
lm(k , r

′)
]
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Sphere in a cavity
Reflection coefficients (three-layer system), for small R and RC

BM
1 =

2i
3

(√εμω
c

)3

×
[

R3
C

1 − μ
1 + 2μ +

9μR3(μs − 1)/(2μ+ 1)
μs + 2)(2μ+ 1) + 2(μs − 1)(1 − μ)R3/R3

C

]

BN
1 =

2i
3

(√εμω
c

)3

×
[

R3
C

1 − ε
1 + 2ε +

9εR3(εs − 1)/(2ε+ 1)
(εs + 2)(2ε+ 1) + 2(εs − 1)(1 − ε)R3/R3

C

]
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Sphere in a cavity
Rewriting the reflection coefficients to polarisabilities

α⋆S+C = α⋆C +
αS

ε

(
3ε

2ε+ 1

)2 1
1 + α⋆CαS/(8π2ε20R6

C)

β⋆S+C = β⋆C + βSμ
(

3
2μ+ 1

)2 1
1 + β⋆CβSμ2

0/(8π2R6
C)
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Excess Polarisabilities
Onsager’s real cavity

α⋆Ons = α
(

3ε1
2ε1 + 1

)2

Hard-sphere model

α⋆HS = 4πε0ε1a3 ε− ε1
ε+ 2ε1

Finite-size particle

α⋆fs = α⋆C +
α⋆Ons

1 + 2α⋆Cα/(8π2ε20ε1a6
2)

1015 1016 1017 1018
-2

-1

0

1

2

3

4

5
×10−40

ξ [rad s−1]

α
∗ (
iξ
)
[A

2
s4
k
g−

1
]
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Casimir–Polder forces in layered media

ice air

101

103

105

101

103

105

U
[µ

eV
]

2.2·10-9 3.1·10-9

−101

−103

−105
a

a2

10-910-10

−101

−103

−105
a

a2

z[m]

Methane: similar behaviour,
different orders of magnitude

Attractive to water-ice interface
repulsive from water-air
interface
Carbon dioxide: change from
repulsion to attraction at the
water-air interface for
finite-size particles
Methane will be captured;
Carbon dioxide released1

1JF, D.F. Parsons et al., Impact of effective polarisability models on the
near-field interaction of dissolved greenhouse gases at ice and air interfaces,
Phys. Chem. Chem. Phys. 21, 21296 (2019).
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Stabilisation of gas hydrates

Hydyrates: ice + gas
Modelling via Lorentz–Lorenz
ε = 1+2Γ

1−Γ with
Γ = εice+1

εice+2
nwh
ni

+ 4παM nm
3

Product of reflection coefficients

r12r32 =
εH − εice

εH + εice

εW − εice

εW + εice

Stable ice layers for CO2 and N2
hydrates of 3-4 nm thickness

1D.F. Parsons, JF, et al. Dispersion Forces Stabilize Ice Coatings at Certain
Gas Hydrate Interfaces That Prevent Water Wetting,
ACS Earth Space Chem. 3, 1014 (2019).
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Effects of a solvent

G(rB, rA, ω)

G(rA, rB, ω)

ε(ω)

αA(ω)

rA

αB(ω)

rB

Screening of wave function restricts volume V res: α→ α V res

V free

Transmission through boundaries cavity models α→ α∗
Absorption via propagation ???
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Screened non-retarded vdW

UvdW(d) = −C⋆
6

d6 , C⋆
6 =

3ℏ
16π3ε20

∞∫
0

α⋆A(iξ)α⋆B(iξ)
ε2(iξ) dξ

Can we find away to approximate C⋆
6 with the free-space

C6 = 3ℏ
16π3ε20

∞∫
0
αA(iξ)αB(iξ)dξ?

Single-point Gauss quadrature rule I =
∞∫
0

f (x)g(x)dx ≈ f (x0)m0

Series of momenta Ii =
∞∫
0

x ig(x)dx → m0 = I0 and x0 = I1/I0

ω =

∫∞
0 ξαA(iξ)αB(iξ)dξ∫∞
0 αA(iξ)αB(iξ)dξ
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Averaged mean-frequencies

Typically larger than 10 eV
Approximation: ε(iω) ≈ Re ε(ω)
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Screening effects

Screened vdW UvdW(d) = −C⋆
6

d6 with

C⋆
6 =

C6

[Re ε(ω)]2
(

V res

V free

)
A

(
V res

V free

)
B

Screened Coulomb Uel(d) = 1
4πε0ε(0)

Q
d

Interesting fact about water: ε(0) ≈ 80 and [Re ε(ω)]2 ≈ 2
→ Screening of Coulomb force 40 times stronger than screening of
vdW forces

1JF et al. Effective screening of medium-assisted van der Waals interactions
between embedded particles, J. Chem. Phys. 154, 104102 (2021).
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Summary

Introduced concepts of macroscopic Quantum Electrodynamics
Dispersion forces as the exchange of virtual photons

Retardation effects
Cavity effects in medium-assisted dispersion forces
Screening of dispersion forces

Applicable to all non-covalent interactions
Many-body effects (E.g. two particles in front of a surface)
Collective optical effects (E.g. superradiance, entanglement)
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