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1SECTION

Introduction to dispersion

forces

This lecture series is dedicated to the general topic of dispersion forces: van-der-Waals

forces, Casimir–Polder forces and Casimir forces. We will focus mainly on van-der-Waals

forces and dive into the underlying theory of macroscopic quantum electrodynamics

to generate a fundamental understanding and see which consequences we can find,

for instance, by looking at large particle separations or by adding further objects such

as a third molecule, a solid dielectric surface, or a solvent. But first, let us recap your

knowledge about van-der-Waals forces.

1.1 Van-der-Waals forces and the four fundamental forces

Task 1.1 What do you know about van-der-Waals forces?

• Force between neutral particles (atoms, molecules, . . . )

• Attractive force

• U =−C6/r 6

Let us have a closer look at these statements:

The van-der-Waals force acts between neutral particles. We know the four fundamen-

tal forces; see table 1: gravity, electromagnetism, and weak and strong interac-

tions. Where do we have to locate the van-der-Waals forces? The weak and strong

interactions cannot cause it because the typical range is on the nanometre to mi-

crometre scale (10−9 . . .10−6 m). Furthermore, it cannot be related to electromag-
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netism because the interacting objects are neutral. Hence there are no charges

involved. Finally, is it gravity? – It cannot be gravity because van-der-Waals forces

are much stronger than gravity forces. But what does it mean? Is there a fifth

force, which is not known right now?1 The short answer is "No!". The longer one

is "Not observed until now. The experimental and theoretical error bars still over-

lap that one does not find a mismatch with the current precision." Concerning

the location of van-der-Waals forces within the fundamental forces, it belongs to

the electromagnetic forces. Still, it is hidden in the classical picture illustrated in

table 1.

Gravity Electromagnetism Weak interaction Strong interaction

Acting on mass charges quarks and leptons quarks

Range ∞ ∞ < 10−17 m ≈ 10−15 m

Rel. strength 1 1036 1025 1038

Long-range 1/r 1/r e−mr /r r

Table 1: Overview of the fundamental interactions: gravity, electromagnetism, weak and

strong interactions concerning the corresponding property of the interaction objects

(acting on), their range, their relative strength (rel. strength) compared to gravity, and

their long-range behaviour.

The van-der-Waals force is attractive. Is this always the case? In the typical situation

where two ground-state neutral point-like particles are brought together in a vac-

uum, the resulting force is always attractive. However, we can see the restrictions

to the attraction of two particles. By (i) changing the environment from a vac-

uum to a liquid [1], (ii) considering anisotropic particles [2], or by (iii) considering

excited particles [3], van-der-Waals forces can be turned repulsive.

The van-der-Waals potential has a 1/r 6 dependency. The non-retarded limit (at short

distances) of the van-der-Waals potential follows an r−6 power law. However, for

longer separations, it turns to a r−7 power law, the so-called retarded regime [4].

In addition, at more minor separations close to binding distances, higher-order

contributions start playing a role that turns the potential into a r−3 power law,

known from the Casimir–Polder and Casimir potentials.

What determines the strength of the van-der-Waals forces? The van-der-Waals (C6)

coefficient denotes the strength of the force. One can assume that this force is not

the same for all particles. This yields the question about the material properties

determining the C6 coefficient.

During the following lectures, we will examine these different questions about the van-

der-Waals forces. We have now seen the limits of the van-der-Waals potential with the

simple power law. In the following, we will derive this interaction from fundamental

1There are considerations about the existence of a fifth force, see for instance: J. L. Feng et al. Phys.

Rev. Lett. 117, 071803 (2016).
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principles and see how we can reproduce the known properties, how we can quantify

the limits mentioned above, and what we can learn beyond.

Within these first lines of the text, we already received several keywords:

Definition 1.1.1

Van-der-Waals forces are forces between neutral particles, such as atoms and

molecules. It is an electromagnetic effect. At short separations, it follows an r−6

power law (non-retarded regime). Its strength depends on the material proper-

ties.

1.2 Properties of atoms and molecules

Task 1.2 How do we distinguish between different particles?

Assume you get an unknown sample, either a gas, a liquid, or a solid. How do you

find out its chemical components? Which devices can you apply?

• Techniques: Chromatography, mass spectroscopy

• Physical quantities: material-specific excitations, mass

Typical investigation methods to distinguish between chemical components are based

on the emission or absorption spectra. The electromagnetic spectrum is unique for each

material. A molecular system is described by an infinite set of wave functions
{
ψn

}
and

the associated energies2 {En} solving the stationary Schrödinger equation

Ĥψn = Enψn , (1)

with the molecular Hamiltonian

Ĥ = T̂c + T̂e + V̂ee + V̂cc + V̂ec , (2)

which separates into the kinetic energy of the core T̂c and of the electrons T̂e and the

interaction potential between the electrons V̂ee , between the cores V̂cc and between the

cores and the electrons V̂ec . For this lecture series, we do not care about the explicit

solutions of Eq. (2). Several methods are available to solve the Schrödinger equation,

such as density functional theory.

Definition 1.2.1

Properties of wave functions: The wave function is a complex probability distri-

bution, which means that they are normalised∫
d3r ψ⋆

n (r )ψn(r ) = 1. (3)

Furthermore, we assume the corresponding energy eigenvalues to be non-

2Note that we consider atomic state leading to a discrete set of energy eigenvalues. For larger

molecules, the energy eigenvalues turn from a discrete set to a continuous energy spectrum, leading to

more complex equations of similar content.
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degenerated, meaning that they are pairwise distinct

E0 < E1 < E2 < . . . . (4)

This property yields the orthogonality of the wave functions, which reads as∫
d3r ψ⋆

n (r )ψm(r ) = δnm , (5)

with the Kronecker delta

δnm =
1, ifn = m

0, else
. (6)

One commonly uses a shorter notation for the wave function, known as bra–ket

notation or Dirac notation

bra vector: ψn(r ) 7→ |n〉
ket vector: ψ⋆

m(r ) 7→ 〈m|
The bracket

〈n|m〉 =
∫

d3r ψ⋆
n (r )ψm(r ) = δnm (7)

denotes the dot product. One way to understand this notation is related to vector

operations. The ket vector corresponds to a column vector

|n〉 =


n1

n2
...

nN

 , (8)

and the bra vector to a row vector

〈m| =
(
m⋆

1 m⋆
2 . . . m⋆

N

)
, (9)

illustrating the relation of the dot product according to matrix multiplications. In

this picture, we can easily see that a scalar quantity, such as energies En , corre-

sponds to measurement results; a vectorial quantity, |n〉, corresponds to states;

and, when we look at the Schrödinger equation, Ĥ |n〉 = En |n〉, that a matrix cor-

responds to an operator. Furthermore, the measurement result and the matrix

are related to each other: each measurable quantity A has its unique operator Â

A = 〈
n|Â|n〉

. (10)

When we now come back to the Schrödinger equation for the free particle, it reads in

Dirac notation

Ĥ |n〉 = En |n〉 . (11)

By multiplying this equation with the bra vector 〈n| for the right and summing over all
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states, this equation transforms to∑
n

Ĥ |n〉〈n| =∑
n

En |n〉〈n| . (12)

The Hamilton operator is independent of the state |n〉, and thus, the sum commutes

with the Hamiltonian

Ĥ
∑
n
|n〉〈n|︸ ︷︷ ︸
=1̂

= Ĥ =∑
n

En |n〉〈n| . (13)

E

E1

E2

E3

|1〉

|2〉

|3〉

Figure 1: Energy levels of an

atom.

As the sum over all projection operators |n〉〈n| yields the

unitary operator; we have found the series expansion of

the particle’s Hamiltonian concerning the energy eigen-

values. Figure 1 illustrates the energy level scheme of an

atom.

We now have seen how the Hamiltonian of a free particle

can be expanded in a series of eigenvalues and eigenvec-

tors. At this point, its advantage is hard to recognise. It

simplifies the following calculations because we do not

need to worry about its explicit solutions. However, we

initialised this part with the question about identifying

different chemical components and mentioned that the

electromagnetic response spectrum of each material is a

unique fingerprint. On the microscopic level, the wave

functions are special for each particle. To this end, a relationship between the micro-

scopic wave functions and the macroscopic spectra has to exist, connecting this unique-

ness over the different scales.

The complex dielectric function describes a macroscopic spectrum

ε(ω) = ε′(ω)+ iε′′(ω) , (14)

with its real and imaginary parts, ε′(ω) and ε′′(ω). The existence of an imaginary part is

a bit weird as we look at realistic materials. Its origin is realistic. When describing the

optical properties of a solid surface, we consider its "colour", which is caused by the re-

flection of light and the absorption of light, typically leading to a warming of the object.

When we want to describe both effects within one equation, it is useful to introduce a

complex refractive index n(ω) = n′(ω)+ in′′(ω). A propagation wave, propagating in the

direction ek , is described by

E (r , t ) = E0e−i
(
ωt−ω

c n(ω)r ·ek
)
. (15)

By inserting the complex refractive index, its imaginary part factorises out

E (r , t ) = E0e−i
(
ωt−ω

c n′(ω)r ·ek
)
e−

ω
c n′′(ω)r ·ek , (16)
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leading to the damping of the wave. Thus, the imaginary part of the refractive index

is called the absorption coefficient. Due to the relation between refractive index and

dielectric function

n(ω) =
√
ε(ω) , (17)

the dielectric function is complex as well.

The dielectric function ε(ω) is traditionally considered as a macroscopic quantity, and

thus it cannot be related to microscopic properties directly. In a broader sense, the di-

electric function is an intensive property that does not scale with the extension of the

object. The corresponding extensive quantity is the polarisability α(ω). Both quantities

are related to each other via the Clausius–Mossotti relation

ε(ω)−1

ε(ω)+2
=

N∑
i=1

Niαi (ω)

3ε0
, (18)

which is the extension to N components (Lorentz–Lorenz model), with the vacuum

permittivity ε0, the number density of the i th component Ni and its molecular polaris-

ability αi (ω).3

The polarisability α(ω) characterises the electromagnetic response of a particle by ap-

plying an external electric field E via inducing a dipole moment

d =α ·E . (19)

It is usually a tensorial quantity. However, in the following, we restrict ourselves to the

consideration of isotropic polarisabilities

α=αI , (20)

with the three-dimensional unit-matrix, I = diag(1,1,1). The frequency-dependence of

the polarisability of a particle excited to the nth state is commonly described as a series

of Lorentz oscillators

αn(ω) = 1

ħ
∑
k

[
dnk dkn

ωkn −ω− i
2 (Γn +Γk )

+ dkndnk

ωkn +ω+ i
2 (Γn +Γk )

]
, (21)

with the reduced Planck constant ħ, the transition dipole moments

dnm = 〈m| d̂ |n〉 = e 〈m| r̂ |n〉 , (22)

the resonance energies (respectively frequencies)

Emn =ħωmn =ħ [En −Em] =ħ[〈n| Ĥ |n〉−〈m| Ĥ |m〉] , (23)

and the decay rates

Γn = ∑
m<n

Γnm = ∑
m<n

ω3
nm |dnm |2
3ħπε0c3

, (24)

which known as the Einstein coefficient or Fermi’s golden rule.
3Note that the considered volume is spherical, which can be seen in the Mie reflection coefficient on

the left-hand side of the equation, see for instance J.D. Jackson Classical Electrodynamics – Chapter 4:

Multipoles, Electrostatics of Macroscopic Media, Dielectrics.
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Task 1.3 Typical strength of a transition dipole moment?

The dipole moment d is charge q times charge separation r , d = qr . A typical

charge in an atom is an electron q = e, and the typical separations are related to

the Bohr radius r = aB. Hence, d = 1.6 ·10−19 C×5.3 ·10−11 m ≈ 8.48 ·10−30 Cm.

Polarisability: optical frequency ν=O
(
1014 Hz

)
→α≈ 1

6.626·10−34Js
×(

8.48 ·10−30 Cm
)2× 1

1014Hz
= 1.1·10−39 C2m2/J = 1.1·10−39 Cm2/V
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2SECTION

Quantisation of the

electromagnetic fields

In the last lecture, we saw that the van-der-Waals forces occur between polarisable par-

ticles and are mediated via the electromagnetic field. This means that classically, we

would need a permanent electromagnetic field inducing dipole moments in the molecules

that can interact. However, we also know that the van-der-Waals forces also arise in the

absence of electromagnetic fields. Thus, we need another mechanism to induce the

dipole moments.

Task 2.1 Dimension analysis of the Casimir force

The Casimir force is an attractive force between two parallel perfectly conducting

plates. We already know that the force is a quantum effect, thus the force density,

[F /A] = N/m2, should depend on the Planck constant, [ħ] = Js. Furthermore, it is a

vacuum-electromagnetic effect, meaning that it should include the speed of light,

[c] = m/s. Which power law scales the Casimir force density with the distance

[d ] = m?

[ħ· c] = Jm = Nm2[ħ
c

]
= Js2/m = Nms2

Obviously, the product between ħ and c needs to be chosen to get rid of the time.

Furthermore, the force density has to be proportional to this product

F

A
∝ħcd n . (25)
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Finally, the units of this equation are

N/m2 = Nm2+n ,

hence, the force density scales with a d−4 power law

F

A
= π2

240
ħc

1

d 4
. (26)

2.1 Maxwell’s equations

The microscopic Maxwell’s equations are:

Gauss’s law describes the relationship between a static electric field and electric charges:

a static electric field points away from positive charges and towards negative charges,

and the net outflow of the electric field through a closed surface is proportional to

the enclosed charge, including bound charge due to polarisation of material. The

coefficient of the proportion is the permittivity of free space

∇·E (r ) = ϱ(r )

ε0
. (27)

Gauss’s law for magnetism states that electric charges have no magnetic analogues,

called magnetic monopoles, i.e. no single pole exists. Instead, the magnetic field

of a material is attributed to a dipole, and the net outflow of the magnetic field

through a closed surface is zero. Magnetic dipoles may be represented as loops

of current or inseparable pairs of equal and opposite "magnetic charges". The to-

tal magnetic flux through a Gaussian surface is zero, and the magnetic field is a

solenoidal vector field

∇·B (r ) = 0. (28)

Faraday’s law describes how a time-varying magnetic field corresponds to the curl of

an electric field

∇×E (r ) =−Ḃ (r ) . (29)

Ampère’s law with Maxwell’s addition: The original law of Ampère states that magnetic

fields relate to electric current. Maxwell’s addition states that they also relate to

changing electric fields, which Maxwell called displacement current

∇×B (r ) =µ0ε0Ė (r )+µ0 J (r ) . (30)

The set of these four equations (27)-(30) describes the propagation of electromagnetic

fields within a given system.
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2.1.1 Electrodynamics in free space

In the absence of charges ϱ(r ) = 0 and currents J (r ) = 0, the Maxwell equations simpli-

fies to

∇·E (r ) = 0, (31)

∇·B (r ) = 0, (32)

∇×E (r )+ Ḃ (r ) = 0 , (33)

∇×B (r )− 1

c2
Ḃ (r ) = 0 , (34)

where we used ε0µ0 = c−2. To simplify this system of equations, we introduce the scalar

potential ϕ(r ) and the vector potential A(r ) according to

E (r ) =−∇ϕ(r )− Ȧ(r ) (35)

B (r ) =∇× A(r ) . (36)

Thus, eqs. (32) and (33) are automatically fulfilled, and the remaining equations yield to

−∆ϕ(r )−∇· Ȧ(r ) = 0, (37)

1

c2
∇ϕ̇(r )+ 1

c2
Ä(r )−∆A(r )+∇ [∇· A(r )] = 0 . (38)

Note that potentials are never unique. For instance, potential forces F (r ) = −∇U (r ).

When we add constant energy E to the potential U (r ) 7→ U (r )+E , the force does not

change because ∇E = 0. In the case of the scalar and vector potentials, this "constant" is

expressed by an arbitrary scalar field Λ(r ) transforming the scalar and vector potentials

via

ϕ(r ) 7→ϕ(r )− Λ̇(r ) , (39)

A(r ) 7→ A(r )+∇Λ(r ) . (40)

This is a gauge transformation and introduces an additional degree of freedom to sim-

plify the equations. In non-relativistic electrodynamics, it is commonly employed the

Coulomb gauge

∇· A(r ) = 0. (41)

This gauge is often referred to as the transverse gauge, which is motivated by the fact

that electromagnetic waves in free space only have transversal components meaning

that the wave oscillates perpendicular to the direction of the propagation k . The relation

between this fact and the gauge (41) can be seen by its transformation into Fourier space

k · A(k) = 0. (42)

Definition 2.1.1

Vector algebra

A plane is given by the equation

ax +bc + cz +d = 0, (43)
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Figure 2: Normal vector

of a plane. Figure taken

from https://mathworld.
wolfram.com/Plane.html

with the off-set d =−ax0−by0−cz0. Furthermore,

a plane is characterised by its normal vector

n =

a

b

c

 . (44)

Thus, a plane can also be given via
x

y

z

−

x0

y0

z0


 ·

a

b

c

= 0 = [r − r0] ·n , (45)

meaning that all points r belong to the plane

whose relative vectors (relative to a point in the

plane r0) are orthogonal to the normal vector.

Hence, Equation (42) means that the vector potential is orthogonal to the wave vector,

which we denote as transverse.

By applying the Coulomb gauge (41) to the field equations (37) and (38), they reduce to

an uncoupled Laplace equation

∆ϕ(r ) = 0, (46)

and a Helmholtz equation
1

c2
Ä(r )−∆A(r ) = 0 . (47)

The solutions of the Helmholtz equation are plane waves

A(r , t ) =
2∑

σ=1

∫
d3k

(2π)3/2
eσ (k)ω

[
ukσei(k ·r−ωt ) +u∗

kσe−i(k ·r−ωt )
]

, (48)

with the two polarisation vectors eσ (σ= 1,2) spanning the plane orthogonal to the wave

vector k and the amplitude of the partial waves ukσ.4

The energy of the field is given by the Hamilton function (or Hamiltonian)

H = 1

2

∫
d3r

[
ε0E 2(r )+ 1

µ0
B 2(r )

]
. (49)

Plugging in the Coulomb gauge (41) and using the orthogonality of the polarisation vec-

tors eσ · eσ′ = δσσ′ and the relation (k ×eσ) · (k ×eσ′) = k2 (eσ ·eσ′) = k2δσσ′ , leaves us

with

H = 2ε0

2∑
σ=1

∫
d3kω2 |ukσ|2 . (50)

These complex-valued functions ukσ can be split into their real and imaginary parts

qkσ =p
ε0

(
ukσ+u∗

kσ

)
, pkσ =−iω

p
ε0

(
ukσ−u∗

kσ

)
, (51)

4Note: real solutions of a wave equation consist of sin and cos function. Complex numbers help to

simplify two equations into one A = ueiϕ+u∗e−iϕ = ueiϕ+ (
ueiϕ

)∗ = 2Re
(
ueiϕ

)
. Thus, A is purely real,

A ∈R.
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which yields the classical Hamiltonian in the form

H = 1

2

2∑
σ=1

∫
d3k

(
p2

kσ+ω2q2
kσ

)
. (52)

Thus, we have converted the Hamiltonian for the free electromagnetic field (49) into an

infinite sum of uncoupled harmonic oscillators with frequencies ω= kc. The functions

qkσ and pkσ are thus analogous to the position and momentum of a classical particle of

mass m attached to a spring with spring constant D = mω2.

Definition 2.1.2

The classical harmonic oscillator describes the motion of a particle in a

quadratic potential V (x) = 1
2 Dx2 with spring constant D . To derive the equa-

tion of motion, we start with the Hamiltonian of the system. The Hamiltonian

describes the total energy of the system, and in the case of a particle of mass m, it

consists of two parts - the kinetic energy T and the potential energy V ,

H = T +V . (53)

The kinetic energy is given by the momentum of the particle p

T = p2

2m
. (54)

Thus, the Hamiltonian reads

H = p2

2m
+ 1

2
Dx2 . (55)

The corresponding equations of motion are according to Newton’s laws:

The momentum change is given by force acting on the particle

ṗ =−dV

dx
, (56)

and,

The position change is given by the momentum acting on the particle

ẋ = p

m
. (57)

Combining both equations, we derived the equation of motion for the harmonic

oscillator

ẍ =− 1

m

dV

dx
=− 1

m
Dx . (58)

By looking closer to the unit of the spring constant [D] = N/m = kg/s2, we can

see that the prefactor D/m has a unit of a frequency square [D/m] = 1/s2 = Hz2.

Thus, we can define the frequency of the harmonic oscillator via ω =p
D/m. To

this end, the equation of motion reads as

ẍ =−ω2x . (59)
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When we neglect the prefactor, we observe that this differential equation means

that we have to differentiate a function twice and obtain the same function with

a minus sign in front. Two functions fulfil this relation — Sine sin and Cosine cos,

d2

dx2
sin x =−sin x ,

d2

dx2
cos x =−cos x . (60)

By using the chain rule to include the frequency ω, we see that the solutions are

harmonic oscillation

x(t ) =C1 sinωt +C2 cosωt . (61)

Take home message

A harmonic oscillator always has a Hamiltonian of the form

H = p2

2m
+ mω2

2
x2 , (62)

quadratic in p and quadratic in x.

Task 2.2 Canonical transformation of the harmonic oscillator

Consider the transformation of the variables

a = pp
2mω

− i
mωxp

2mω
,

a∗ = pp
2mω

+ i
mωxp

2mω
,

and transform the Hamiltonian (62) into the complex plain.

Solving the system of equations to get expressions for p and x

p =
√

mω

2

(
a +a∗)

,

x = i
1p

2mω

(
a −a∗)

.

And inserting the result into the Hamiltonian yields

H =ωaa∗ =ω |a|2 . (63)

Take home message

A harmonic oscillator can always be expressed via a complex

Hamiltonian of the form

H =ω |a|2 , (64)

with complex amplitude a, whose real part is proportional to

the momentum and imaginary part to the position.
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2.1.2 General solutions via dyadic Green function

In the previous section, we derived the mode structure for the vacuum (in the absence

of charges and currents). To include the presence of absorbing materials, one needs

to solve the Maxwell equations (27)–(30) for a given system. The Maxwell equations in

this form are charged-based due to the explicit consideration of charge density ϱ(r ) and

charge density current j (r ). To introduce dielectric objects, one separates the charges

into free and bounded charge density

ϱ(r ) = ϱfree(r )+ϱbound(r ) , (65)

analogously for the currents. The bounded charges are considered as a source for the

polarisation

∇Ṗ (r ) = ϱbound(r ) . (66)

The continuity equation and the corresponding current yield the magnetisation

jbound(r ) =∇×M(r )+ Ṗ (r ) . (67)

Thus, we can absorb the consideration of the bounded charges by adding the polarisa-

tion P and magnetisation M to the electric and magnetic fields, leading the displace-

ment field

D(r ) = ε0E (r )+P (r ) , (68)

and the magnetisation field

H(r ) = 1

µ0
B (r )−M(r ) . (69)

Thus, we can write the macroscopic Maxwell equations

∇·D(r ) = ϱfree(r ) , (70)

∇·B (r ) = 0, (71)

∇×E (r ) =−Ḃ (r ) , (72)

∇×H(r ) = jfree(r )+ Ḋ(r ) . (73)

Assuming that the medium responds linearly and locally to externally applied fields, we

can write their responses in the form

P (r , t ) = ε0

∞∫
0

dτχe(r ,τ)E (r , t −τ) , (74)

M(r , t ) = 1

µ0

∞∫
0

dτχm(r ,τ)B (r , t −τ) , (75)

with the electric and magnetic media response functions χe and χm, respectively.

We need to have conditions for unique solutions to solve this system of differential

equations for a given geometry. These conditions are the so-called Maxwell boundary
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conditions which mean the continuation of the fields at interfaces and read

n12 × (E2 −E1) = 0 , (76)

n12 · (D2 −D1) =σ12 , (77)

n12 · (B2 −B1) = 0, (78)

n12 × (H2 −H1) = j12 , (79)

with the normal vector of the interface n12, the surface charge density σ12 and the sur-

face current density j12. Finally, when we want to consider a specific system, we need to

solve this system of equations together with the boundary conditions. To stay as general

as possible, we first consider the temporal Fourier transform of the Maxwell equations

∇·D(r ) = ϱfree(r ) , (80)

∇·B (r ) = 0, (81)

∇×E (r ) = iωB (r ) , (82)

∇×H(r ) = jfree(r )− iωD(r ) . (83)

Now, we can plug in the displacement field (68) and the magnetisation field (69) into (83)

leading to

∇×
[

1−χM(r )

µ0
B (r )

]
= jfree(r )− iωε0

(
1+χE(r )

)
E (r ) . (84)

By introducing

ε(r ,ω) = 1+χE(r ,ω) , µ(r ,ω) = 1

1−χM(r ,ω)
, (85)

E(r)

jN(r
′)

G(0)(r, r′)G(S)(r, r′)

Figure 3: Separation of the Green

function G into the free (bulk)

propagation G(0) and its scattering

part G(S).

and substituting the magnetic field B via Eq. (82),

we obtain the vector Helmholtz equation

∇× 1

µ(r ,ω)
∇×E (r ,ω)−ω

2ε(r ,ω)

c2
E (r ,ω) = iω jfree(ω) ,

(86)

whose solution can be written as

E (r ,ω) = iω
∫

d3r ′G(r ,r ′,ω) · jfree(r ′) , (87)

with the dyadic (tensorial) Green function obeying[
∇× 1

µ(r ,ω)
∇×−ω

2ε(r ,ω)

c2

]
G(r ,r ′,ω) =δ(r − r ′) .

(88)

The Green function techniques allow us to con-

tinue with theory without explicitly considering

the fields of the specific system. Of course, when we want to apply this theory to any

system, we need to take care of its solution. But for the moment, we found a way to

express the complex solution of Maxwell’s equations within one quantity.

The Green function is known as the field propagator. It has to be read from right to left,

meaning that the source point is r ′ and the final point is r . It can be separated into the

free propagation G(0) and its scattering part G(S)

G(r ,r ′,ω) = G(0)(r ,r ′,ω)+G(S)(r ,r ′,ω) . (89)

Figure 3 illustrates this separation.
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2.1.3 Free-space Green function

One important solution of the vector Helmholtz equation is the free-space or bulk Green

function, which describes the propagation in a spatially homogeneous medium ε(r ,ω) =
ε(ω) and µ(r ,ω) =µ(ω). Thus, the Helmholtz equation simplifies to[∇×∇×−k2

0

]
G(0)(r ,r ′,ω) =µ(ω)δ(r − r ′) , (90)

with the wavevector

k0 = ω

c

√
ε(ω)µ(ω) . (91)

It can be seen that the Helmholtz equation only depends on relative coordinates ϱ =
r − r ′ leading to a spatially local Green function G(0)(r ,r ′,ω) = G(0)(r − r ′,ω). Defining

the Fourier transform of the Green function

G(0)(k ,ω) =
∫

d3ϱ

(2π)3/2
G(0)(ϱ,ω)e−ik ·ϱ , (92)

the Fourier transformed Helmholtz equation reads

−k ×k ×G(0)(k ,ω)−k2
0G(0)(k ,ω) =µ(ω)1 , (93)

with the three-dimensional unit matrix 1 = diag(1,1,1).

Definition 2.1.3

x

y

v

w
vw

Figure 4: Projection of the vector

v (green) on the vector w (red)

yields the vector vw .

Projection operator:

The projection of a vector v onto another

vector w is the component of v into the di-

rection of w . Thus, we want to create a vec-

tor vw pointing in the same direction as w

having the length of the projection of v onto

w . The length can be determined by the dot

product

l = w ·v

|w | .

The direction is given by the unit vector cor-

responding to w

ew = w

|w | .

Combining both, we can obtain the projection

vw = l ew = w ·v

|w |
w

|w | = wi vi
w j

|w |2 = w j wi

|w |2 vi ,

where we used the commutation of scalar quantities. The first term on the right-

hand side has the structure of a matrix with the components

P j i =
w j wi

|w |2 .

Thus, we can write the projection of the vector v as a matrix product

vw = Pw ·v , (94)
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with the projection operator

Pw = w w

|w |2 , (95)

onto the vector w . Such projection operators appear very often; for instance, the

atom flip operator in the molecular Hamiltonian (13) projects any state onto the

eigenbasis |n〉 (the denominator is one due to the normalisation of the state vec-

tors).

By introducing the projection operator onto the wave vector k

Pk = kk

k2
,

we can write the double cross product as

−k ×k×= k2
(

1− kk

k2

)
, (96)

separating the field into its transverse components. Thus, we can write the bulk Green

function as

G(0)(ϱ,ω) =µ(ω)
∫

dk3eik ·ϱ

(2π)3/2

[
1

k2 −k2
0

(
1− kk

k2

)
− 1

k2
0

kk

k2

]
. (97)

This integral can be carried out and yields

G(0)(ϱ,ω) =−µ(ω)

3k2
0

δ(ϱ)− µ(ω)

4πk2
0ϱ

3

[
f (kϱ)1− g (kϱ)

ϱϱ

ϱ2

]
eik0ϱ , (98)

with f (x) = 1− ix −x2 and g (x) = 3− ix −x2.

2.2 Quantisation of the electromagnetic field

In the previous chapter, we discussed the classical Maxwell equation describing classical

Electrodynamics and introduced the Green function as a general solution. Furthermore,

we have already considered parts of the Hamiltonian mechanics for the electromagnetic

field, which will be extended in this section to quantise the electromagnetic fields. Be-

fore we derive the quantised fields, we will take a special view on the linear response of

a medium (74).

2.2.1 Fluctuation–Dissipation theorem

The response of a system R with respect to an external force F can be written in general

as a convolution with its corresponding response function χ

R(t ) =
t∫

−∞
χ(t − t ′)F (t ′)dt ′ . (99)

The response functionχ characterises the system. In the framework of differential equa-

tions, it describes the particular solution.
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Definition 2.2.1

Linear response function of the harmonic oscillator:

The differential equation of the damped harmonic oscillator reads

ẍ +2δẋ +ω2
0x = f (t ) , (100)

with the damping constant δ, the angular frequencyω0 and the driving force f (t ).

Its solution can be written as the superposition of the solution homogeneous

equation

ẍ +2δẋ +ω2
0x = 0, (101)

and a particular solution of the inhomogeneous equation. The homogeneous so-

lution can be found by applying the ansatz x(t ) = eλt leading to the characteristic

polynomial

λ2 +2δλ+ω2
0 = 0, (102)

with the solution

λ1,2 =−δ±
√
δ2 −ω2

0 . (103)

Thus, the homogeneous solution reads

xhom(t ) =C1eλ1t +C2eλ2t , (104)

showing an exponential decay when the damping is stronger than the angular

frequency δ ≥ ω0. The coefficients C1,2 have to be fixed by the initial conditions.

For the driven oscillator, one needs to add a particular solution, satisfying the

entire differential equation. For a given driving force f (t ), one usually guesses

a particular solution xpart. If one does not find a good guess, one applies Green

function techniques

xpart(t ) =
t∫

0

dt ′g (t − t ′) f (t ′) , (105)

where the Green function satisfies the differential equation

g̈ (t )+2δġ (t )+ω2
0g (t ) = δ(t − t ′) . (106)

Fourier transforming this equation, similar to the calculation of the bulk Green

function in Sec. 2.1.3, we transform the differential equation into an algebraic

equation

−ω2g (ω)+2δiωg (ω)+ω2
0g (ω) = 1p

2π
. (107)

Finally, we find the response function in Fourier space

g (ω) = 1p
2π

1

ω2
0 −ω2 +2iδω

. (108)

Here, we can see that the response function has an imaginary part related to the

oscillator’s damping. Damping is a dissipative process that is connected to energy

loss.
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In the previous definition box, we have seen that a dissipative system always has a

complex-valued response function, Im(χ) ̸= 0.

Every quantity A can be separated into a mean-value 〈A〉 and a fluctuation A′

A = 〈A〉+ A′ , (109)

where different methods exist to estimate the mean value, see table 2.

Time-average 〈A(t )〉 = 1
τ

t+τ/2∫
t−τ/2

dt ′A(t ′)

Volume-average 〈A(t )〉 = 1
V

∫
V

d3r A(r, t )

Ensemble-average 〈A(t )〉 = 1
N

∑N
i=1 Ai (t )

Table 2: Overview of a few averaging schemes.

The Fluctuation-Dissipation theorem connects the fluctuations in a system with its dis-

sipations. This connection relates the fluctuation correlation function
〈

A′(t )A′(t ′)
〉

with

the imaginary part of the response function via the power spectrum being the Fourier

transform of the fluctuation correlation function

S(ω) = 1p
2π

∫
dteiωt 〈

A′(t )A′(0)
〉

. (110)

The Fluctuation–Dissipation theorem for a classical field reads

S(ω) =−2kBT

ω
Imχ(ω) . (111)

Definition 2.2.2

Summary of Dissipation–Fluctuation theorem:

Fluctuations and dissipations go hand in hand: When a system has fluctuations,

it automatically dissipates and vice versa. The linear response function of a dissi-

pative system is always complex-valued.

As we are dealing with absorbing media, which means that the system absorbs energy

(dissipation), we need to introduce noises (fluctuations) to the responses (74)

P (r , t ) = ε0

∞∫
0

dτχe(r ,τ)E (r , t −τ)+PN(r , t ) , (112)

with the noise polarisation PN(r , t ) which results from a noise charge density

ϱN(r ,ω) =−∇·PN(r ,ω) , (113)

and its associated noise charge current density

jN(r ,ω) =−iωPN(r ,ω)+∇×MN(r ,ω) , (114)

with the noise magnetisation MN.
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2.2.2 Langevin noise approach

In the absence of free charges and currents, ϱfree(r ,ω) = 0 and jfree(r ,ω) = 0, respec-

tively, the electric field is induced by the noise charge current density

E (r ,ω) = iµ0ω

∫
d3r ′G(r ,r ′,ω) · j (r ′,ω) , (115)

where the current is induced by the electric field itself via the generalised Ohm’s law

j (r ,ω) =
∫

d3r ′Q(r ,r ′,ω) ·E (r ′,ω)+ jN(r ,ω) , (116)

with the complex conductivity tensor Q(r ,r ′,ω).

Until this point, all consideration regarding the electromagnetic field regarded classical

electrodynamics. To quantise the field, we apply the second quantisation scheme to the

noise charge current density as canonical variable jN 7→ ĵN. According to this quanti-

sation scheme, we need to calculate the commutator, which we get from the classical

Poisson brackets {
jN(r ,ω), j∗N(r ′,ω′)

} 7→ 1

iħ
[

ĵN(r ,ω), ĵ †
N(r ′,ω′)

]
. (117)

The Poisson brackets can be obtained from the Fluctuation–Dissipation theorem ac-

cording to (116) {
jN(r ,ω), j∗N(r ′,ω′)

}=−i
ω

π
δ(ω−ω′)ReQ(r ,r ′,ω) , (118)

leading the Hamiltonian

Ĥ =π
∫

dω
∫

d3r d3r ′ ĵ †
N(r ,ω) ·ReQ(r ,r ′,ω) · ĵN(r ′,ω) . (119)

Due to the residual of the commutator, we can conclude that the states ĵN(r ,ω) are not

orthogonal. We want to bring the Hamiltonian in the form (63). Introducing the trans-

form

f̂ (r ,ω) =
√

ħω
π

∫
d3r ′K(r ,r ′,ω) · ĵN(r ′,ω) , (120)

we can write the Hamiltonian as

Ĥ =∑
λ

∫
dω

∫
d3r ħω f̂ †(r ,ω) · f̂ (r ,ω) , (121)

and the commutator as [
f̂ (r ,ω), f̂ †(r ′,ω′)

]
= δ(ω−ω′)δ(r − r ′) . (122)

But this leaves the question about the transformation matrix K(r ,r ′,ω). Details about

its construction can be found in Ref. [5]. We restrict ourselves to the consideration of

spatially local

ReQ(r ,r ′,ω) = ReQ(r ,ω)δ(r − r ′) , (123)

isotropic

ReQ(r ,ω) = ReQ(r ,ω)1 , (124)
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and inhomogeneous dielectric medium

ReQ(r ,ω) = ε0ωImχ(r ,ω) . (125)

As K is the ’square-root’ of the ReQ

ReQ(r ,r ′,ω) =
∫

d3s K(r , s,ω) ·K+(s,r ′,ω) , (126)

we can evaluate it due to the abovementioned assumptions

K(r ,r ′,ω) =√
ε0ωImχ(r ,ω)δ(r − r ′)1 . (127)

Thus, the electric field operator reads as

Ê (r ,ω) = i

√
ħ
πε0

ω2

c2

∫
d3r ′

√
Imχ(r ′,ω)G(r ,r ′,ω) · f̂ (r ′,ω) . (128)

The ladder operators f̂ and f̂ † describe the dressed field excitations meaning photonic

excitations and media excitations. Therefore, they are often called polaritonic excita-

tions. Some important expectation values are〈
f̂ (r ,ω)

〉= 〈
f̂ †(r ,ω)

〉
= 0 (129)〈

f̂ (r ,ω) f̂ (r ,ω)
〉= 〈

f̂ †(r ,ω) f̂ †(r ,ω)
〉
= 0 (130)〈

f̂ †(r ,ω) f̂ (r ′,ω′)
〉
= n(ω)δ(r − r ′)δ(ω−ω′)1 , (131)〈

f̂ (r ,ω) f̂ †(r ′,ω′)
〉
= (n(ω)+1)δ(r − r ′)δ(ω−ω′)1 , (132)

with the averaged thermal photon number

n(ω) = 1

eħω/(kBT ) −1
. (133)
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3SECTION

Dispersion forces

α(ω)

ε(ω), µ(ω)

εM(ω), µM(ω)

Figure 5: Scatch of the Casimir–

Polder interaction: a polarisable

particle α(ω) interacts with an

uncharged dielectric object (solid

dark grey object) described by the

permittivity ε(ω) and permeability

µ(ω).

In the previous sections, we looked closer at

the treatment of particles with the Hamilto-

nian (13) and the quantisation of the electromag-

netic fields (121). In this section, we want to anal-

yse the coupling between particles and fields via

the dipole coupling

Ĥint =−d̂ · Ê . (134)

This consideration will guide us to the Casimir–

Polder interaction, the interactions between a sin-

gle particle and a dielectric object, and the van-der-

Waals interaction between two polarisable parti-

cles.

3.1 The Casimir–Polder potential

The considered scenario is depicted in Fig. 5. Everything surrounding the particle with

polarisability α(ω) (the dielectric object with permeability ε(ω) and permittivity µ(ω)

and the back-ground medium with ε(iξ)(ω) and µM(ω)) will be considered via the field

Hamiltonian ĤF. The particle is described by the Hamiltonian ĤA (index A for atom).

Thus, the combined system is described by unperturbed Hamiltonian

Ĥ0 = ĤF + ĤA , (135)

23



leading to the so-called Fock-states |0,{0}〉 = |0〉 |{0}〉, as the product of the single states.

The total Hamiltonian requires the interaction between both systems

Ĥ = ĤF + ĤA + Ĥint . (136)

We will solve this equation perturbatively

∆E =−〈0,{0}| d̂ · Ê |0,{0}〉 (137)

−∑
k

∫
d3r dω

〈0,{0}| d̂ · Ê |k,1(r ,ω)〉〈k,1(r ,ω)| d̂ · Ê |0,{0}〉
ħ (ωk −ω)

+·· · . (138)

The first-order vanishes due to Eq. (129). Similar to the cancellation for the field op-

erators, one can apply the selection rules for the dipole operator, which only captures

transition dipole moments. Transitions are from one state to another. As the initial and

final state are both the ground state, we do not find any transition. By writing the excited

field state as an excitation of the ground-state

f̂ †(r ,ω) |{0}〉 = |1(r ,ω)〉 , (139)

we can evaluate the matrix element

〈k,1(r ,ω)| d̂ · Ê (r A) |0,{{0}〉 = 〈k| d̂ |0〉〈{0}| f̂ (r ,ω)Ê (r A) |{0}〉
= dk0 ·G∗,T (r A,r ,ω) , (140)

where we applied Eq. (132). The remaining term in the nominator of Eq. (138) is its

complex-conjugated and transposed result. Together with the integral relation for Green

functions ∫
d3s G(r , s,ω) ·G∗,T (s,r ′,ω) = ħµ0

π
ω2ImG(r ,r ′,ω) , (141)

we find the energy shift

∆E =−∑
k

∫
dωµ0ω

2

π(ωk −ω)
d0k · ImG(r A,r A,ω) ·dk0 , (142)

leading to the interpretation that the Casimir–Polder potential is proportional to the op-

tical local-mode density ImG(r A,r A,ω). Recalling the separation of the Green function

into its bulk and scattering part (89), we can split the result into position-dependent

part

∆E =−∑
k

∫
dωµ0ω

2

π(ωk −ω)
d0k · ImG(S)(r A,r A,ω) ·dk0 , (143)

and a position-independent part

∆E =−∑
k

∫
dωµ0ω

2

π(ωk −ω)
d0k · ImG(0)(r A,r A,ω) ·dk0 . (144)

The latter can be evaluated explicitly by inserting the free-space Green function (98)

leading to the Lamb shift

∆ELamb = µ0

6π2c

∑
k
ω3

k |d0k |2 ln

(
me c2

ħωk

)
. (145)
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The position-dependent contribution is the Casimir–Polder potential, which can be ma-

nipulated further by using ImG = (G−G∗)/(2i) and Schwarz reflection principle G∗(ω) =
G(−ω∗) leading

UCP(r A) = µ0

2iπ

∑
k

 ∞∫
0

dω

ωk +ω
−

−∞∫
0

dω

ωk −ω

ωkωd0k ·G(S)(r A,r A,ω) ·dk0 . (146)

Imω

Reω

Figure 6: Contours for integrat-

ing the Casimir–Polder potential

to flip from real to imaginary fre-

quencies.

These integrals can be flipped to the imaginary

frequency axis by applying contour integral tech-

niques. The Green function is a so-called holomor-

phic function, meaning it has no divergencies in

the upper complex half-plane. Thus, the integra-

tion along a closed contour in the upper half-plane

always vanishes∮
G(r ,r ,ω)dω= 0. (147)

By choosing the integration paths as depicted in

Fig. 6,

1st path: along the positive real frequency axis, followed by the angle from 0 to π/2

along the infinite line and going back along the imaginary axis

2nd path: along the negative real frequency axis, continued via the infinite line over the

angle from π to π/2, and again going back along the imaginary axis,

both integrals can be turned onto the imaginary frequency axis, leading to

UCP(r A) = µ0

π

∑
k

∞∫
0

dξ
ωkξ

2

ω2
k +ξ2

d0k ·G(S)(r A,r A, iξ) ·dk0 . (148)

At the beginning of this chapter, we mentioned the interaction between a polarisable

particle and a dielectric object. Hence, the final step is to convert the transition dipole

moments to the ground-state polarisability via

α(ω) = lim
ϵ→0+

1

ħ
∑
k

(
dk0d0k

ω+ωk + iϵ
− d0k dk0

ω−ωk + iϵ

)
(149)

By using the relation a ·A·b = ai Ai j b j = b j ai Ai j = tr[(ba)·A], we find the Casimir–Polder

potential

UCP(r A) = ħµ0

2π

∞∫
0

dξξ2 tr
[
α(iξ) ·G(S)(r A,r A, iξ)

]
. (150)

In contrast to the previous result (142), this equation (150) contains the entire scatter-

ing Green function instead of its imaginary part. In this sense, we can interpret the

Casimir–Polder potential as an exchange of virtual photons. The Green function is the

field propagator for classical fields and the photon propagator for quantised fields. The

ground-state fluctuations of the electromagnetic field spontaneously create a virtual
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photon at the particle’s position. This virtual photon is emitted into the entire space,

reflected at the surrounding interfaces and propagates back to the particle (equal posi-

tion arguments in the Green function, G(r A,r A,ω), also called coincidence limit). The

virtual photon interacts with the particle by reaching the particle, expressed by the po-

larisability. These vacuum fluctuations occur at all frequencies. For this reason, we have

to sum (integrate) over all frequencies. A virtual photon is a quasi-particle, meaning it

does not exist freely. It only appears for interactions with other objects. But it behaves

like real photons and thus can be manipulated like a real photon. These manipulations

are, for instance, reflections at interfaces or absorption by media.

3.2 An atom in front of an infinite half-space

In the case of an atom in front of an infinite half-space, we need the Green function to

reflect an electromagnetic wave at a single interface. The corresponding Green function

can be calculated analytically and reads for an interface located in the z = 0-plane

G(S)
pl (r ,r ′,ω) = i

8π2

∫
d2k∥

k⊥
1

eik∥·(r−r ′)+ik⊥
1 (z+z ′)

[
rse1

s+e1
s−+ rp e1

p+e1
p−

]
, (151)

with the Fresnel reflection coefficients for s-polarised waves

rs =
k⊥

1 −k⊥
2

k⊥
1 +k⊥

2

, (152)

and for p-polarised waves

rp = ε2k⊥
1 −ε1k⊥

2

ε2k⊥
1 +ε1k⊥

2

, (153)

and the corresponding polarisation unit vector es,p,±. The indices at perpendicular wave

vectors and the superscripts at the polarisation vectors indicate the region (medium).

They are 1 for z > 0 and 2 for z < 0. The parallel wave vector is parallel to the plane

k∥ ⊥ ez . The z-component of the wave vector reads

k⊥
j =

√
ε j
ω2

c2
−k∥2 . (154)

By introducing spherical coordinates for the k∥ integral, k = k∥(cosϕ, sinϕ,0), one finds

e j
s± = ek∥ ×ez = (sinϕ,−cosϕ,0) , (155)

and

e j = 1

k j

(
k∥ez ∓k⊥

j ek∥
)
= c

ω
p
ε j

(∓k⊥
j cosϕ,∓k⊥

j sinϕ,k∥) . (156)

Thus, the dyads in Eq. (151) read

e1
s+e1

s− =

 sin2ϕ −sinϕcosϕ 0

−sinϕcosϕ cos2ϕ 0

0 0 0

 , (157)
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and

e1
p+e1

p− =− c2

ω2ε1


k⊥

1
2

cos2ϕ k⊥
1

2
sinϕcosϕ −k∥k⊥

1 cosϕ

k⊥
1

2
sinϕcosϕ k⊥

1
2

sin2ϕ −k∥k⊥
1 sinϕ

k∥k⊥
1 cosϕ k∥k⊥

1 sinϕ −k∥2

 , (158)

and the angular integral can be carried out. As the Casimir–Polder potential (150) lives

on the imaginary frequency axis, we need to substitute ω = iξ, and we observe that the

perpendicular wave vector turns purely imaginary

k⊥
j =

√
ε j
ω2

c2
−k∥2 =

√
−ε j

ξ2

c2
−k∥2 = i

√
ε j
ξ2

c2
+k∥2 = iκ j , (159)

and we call its imaginary part κ j . Consequently, the reflection coefficients turn real

rs =
κ⊥1 −κ⊥2
κ⊥1 +κ⊥2

, rp = ε2κ
⊥
1 −ε1κ

⊥
2

ε2κ
⊥
1 +ε1κ

⊥
2

. (160)

By applying the coincidence limit r ′ 7→ r , the Green function gets exponentially damped

(evanescence waves). Finally, the Green function reads

G(S)
pl (r A,r A, iξ) = 1

8π

∞∫
0

k∥dk∥

κ1
e−2κ1z

rs

1 0 0

0 1 0

0 0 0

− rp c2

ξ2ε1


κ2

1 0 0

0 κ2
1 0

0 0 2k∥2


 . (161)

Inserting this result into the Casimir–Polder potential (150), assuming an isotropic par-

ticleα=α1 located in vacuum ε1 = 1, we find the Casimir–Polder potential

UCP(zA) = ħµ0

8π2

∞∫
0

dξξ2α(iξ)

∞∫
ξ/c

dκe−2κzA

[
κ−κ2

κ+κ2
+

(
1−2

κ2c2

ξ2

)
ε(iξ)κ−κ2

ε(iξ)κ+κ2

]
, (162)

with the imaginary part of the wave vector in the second medium

κ2 =
√

[ε(iξ)−1]
ξ2

c2
+κ2 . (163)

In the non-retarded limit, when the distance between the atom and the interface is

much smaller than the dominant wavelengths zA ≪ c/ω̄. Thus, the dominant contri-

bution to the integral arises from large wave vectors due to the exponential function.

For this reason, we can approximate the perpendicular wave vectors to be equal

κ2 ≈ κ , (164)

leading to the cancellation of the reflection coefficient for s-polarised waves, rs = 0 and

the reflection coefficient for p-polarised waves becomes κ-independent

UCP(zA) =− ħ
4π2ε0

∞∫
0

dξα(iξ)
ε(iξ)−1

ε(iξ)+1

∞∫
ξ/c

dκκ2e−2κzA . (165)
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By shifting the lower bound of the remaining integral to 0, the integral can be carried

out analytically and results in the well-known C3-potential

UCP(zA) =−C3

z3
A

, (166)

with

C3 = ħ
16π2ε0

∞∫
0

dξα(iξ)
ε(iξ)−1

ε(iξ)+1
. (167)

In contrast, for larger separations zA ≫ c/ω̄, we can restrict the frequency integral to be

dominated by its static contributions, leading to the C4-potential

UCP(zA) =−C4

z4
A

, (168)

with

C4 = 3ħcα(0)

64π2ε0

∞∫
1

dv

[(
2

v2
− 1

v4

)
ε(0)v −

√
(v2 −1)+ε(0)

ε(0)v +
√

(v2 −1)+ε(0)
− 1

v4

v −
√

(v2 −1)+ε(0)

v +
√

(v2 −1)+ε(0)

]
.

(169)

Figure 7: Casimir–Polder potential for

an atom in front of an infinite half-

space: exact solution (Eq. (43); blue

line), retarded potential (Eq. (168); yel-

low line) and non-retarded potential

(Eq. (166); red line).

The different approximations are depicted in

Fig. 7. It can be observed that the non-

retarded approximation is only valid for sep-

arations smaller than 10 nm. The retarded

potential has a small deviation concerning

the exact solution, which is caused by tem-

perature. The largest deviation of both ap-

proximations is around 100 nm.

3.3 Born Series expansion

In the previous chapters, we derived the

Casimir–Polder potential in terms of field

propagators (Green function of the vector

Helmholtz equation). We applied the theory

to the simple case of an atom in front of an infinite half-space. The Green functions

are analytically known for planarly, cylindrically and spherically layered systems. Fur-

thermore, the solution in orthogonal elliptical coordinates exists. However, most of the

interesting scenarios have other geometries. For this reason, one needs to find ways to

approximate the scattering Green function for arbitrary geometries. Beyond numerical

solutions, for instance, calculating the mode structure via COMSOL or calculating sur-

face currents via scuff-em, approximation methods exist. For instance, by combining

known geometries, such as two cylinders or a sphere and a plane, one usually applies

mode-matching techniques that develop the Green function of one object in the shifted

basis of the others. For periodic structures, one often uses the Rayleigh series expan-

sion. This expansion develops the field in plane waves and obtains effective reflection

and transmission coefficients for each mode.

In arbitrary geometries, the Born series expansion is typically the method of choice.
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r

r′

s′s′′

Figure 8: Sketch of the Born se-

ries expansion for the scattering at

a cube.

We are interested in the solution of the vector

Helmholtz equation for a given system represented

by the spatial dielectric function[
∇×∇×−ω

2

c2
ε(r ,ω)

]
G(r ,r ′,ω) =δ(r − r ′) . (170)

To solve this system, we introduce a reference

Green tensor satisfying the Helmholtz equation

(bulk, vacuum, layered media, ...)[
∇×∇×−ω

2

c2
ε0(r ,ω)

]
G(0)(r ,r ′,ω) =δ(r − r ′) .

(171)

One typically uses the bulk Green function and, on molecular, atomic or even sub-

atomic scales, the vacuum Green function. Calculating the difference between both

equations yields[
∇×∇×−ω

2

c2
ε0(r )

]
G(S)(r ,r ′) = ω2

c2
δε

[
G(0)(r ,r ′)+G(S)(r ,r ′)

]
, (172)

with the difference dielectric function

δε= δε(r ,ω) = ε(r ,ω)−ε0(r ,ω) . (173)

Thus, equation (172) shows that the wanted Green function G(S) is induced by the refer-

ence Green function G(0) with the inhomogeneity

ω2

c2
δε

[
G(0)(r ,r ′)+G(S)(r ,r ′)

]
. (174)

Finally, we can write its solution formally as a convolution of the fundamental solution

with the inhomogeneity

G(S)(r ,r ′,ω) =
∫

d3s G(0)(r ,s,ω) · ω
2

c2
δε

[
G(0)(s,r ′,ω)+G(S)(s,r ′,ω)

]
. (175)

The resulting integral equation is typically solved iteratively. Its first-order term is given

by neglecting the scattering Green function in the integrant

G(S)
1 (r ,r ′,ω) =

∫
d3s G(0)(r ,s,ω) · ω

2

c2
δεG(0)(s,r ′,ω) . (176)

The next order can be obtained by plugging in the result of the first order in the integrant

G(S)
2 (r ,r ′,ω) =

∫
d3s G(0)(r ,s,ω) · ω

2

c2
δε

[
G(0)(s,r ′,ω)+G(S)

1 (s,r ′,ω)
]

, (177)

and so on. This series expansion is equivalent to the Dyson series in Quantum Field

Theory. The free-space Green function is typically considered in the Born series expan-

sion, illustrated in Fig. 8. The scattering from the source point r ′ to the final point r r

is expanded in terms of scattering events. The first order means that a single volume

element at s ′ of the dielectric body scatter each photon

G(S)(r ,r ′,ω) = ω2

c2

∫
d3s′G(0)(r , s ′,ω) ·δε(s ′,ω) ·G(0)(s ′,r ′,ω) . (178)
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In terms of dispersion forces, this approximation is known as Hamaker approach (pair-

wise summation when r ′ 7→ r ). The second order considers a further scattering event

inside the dielectric body

G(S)(r ,r ′) =
(
ω2

c2

)2 ∫
d3s′d3s′′G(0)(r , s ′) ·δε(s ′) ·G(0)(s ′, s ′′) ·δε(s ′′) ·G(0)(s ′′,r ′) . (179)

As illustrated in Fig. 8, the second order of the Born series expansion considers three-

body effects (Axilrod–Teller interactions).

In sec. 2.1.3, we considered the bulk Green function and observed that the Green func-

tion consists of two parts: a regular part R describing the propagation of the photons

and a singular part δ leading to the self-energy of the particles. Thus, we can apply a

singularity extraction to the Green function

G(0)(r ,r ′,ω) =λδ(r − r ′)+R(r ,r ′,ω) , (180)

with λ=−c2/(3ω2) for vacuum. The incoming and outgoing photons, described by the

outer Green functions, are regular. But all remaining Green functions for all orders in-

clude the self-energies when the internal scattering points meet each other. Thus, we

can correct the first order by including the self-energies from the higher orders, leading

to

G(S)(r ,r ′,ω) = ω2

c2
δε(ω)

∫
d3s

∞∑
i=0

[
ω2

c2
λδε

]i

R(r , s,ω) ·R(s,r ′,ω) . (181)

The sum can be identified as a geometric series and, thus, can be carried out

∞∑
i=0

[
ω2

c2
λδε

]i

=
(
1−

[
ω2

c2
λδε

])−1

, (182)

and yields the local-field corrected Green function

G(S)(r ,r ′,ω) = ω2

c2

χ(ω)

1+χ(ω)/3

∫
d3sR(r , s,ω) ·R(s,r ′,ω) , (183)

with χ(ω) = ε(ω)−1.

3.4 Van-der-Waals potential

The van-der-Waals force acts between two polarisable particles. One is located at r A

with polarisability αA and the other at rB with polarisability αB . The common proce-

dure to derive the van-der-Waals potential in analogy to the Casimir–Polder potential3.1

would be to apply perturbation theory to the interaction Hamiltonian

Hint =−d̂A · Ê (r A)− d̂B · Ê (rB ) . (184)

Its first three orders will vanish due to the selection rules; thus, we need to consider the

fourth order of the perturbation series. This yields a very long calculation [5]. Instead,

we can start with the Casimir–Polder potential (150) and consider the scattering at a
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single point rB . Let’s look closely at the coefficient we derived in the previous section in

equation (183)
χ(ω)

1+χ(ω)/3
= 3

ε−1

ε+2
, (185)

which is equivalent to the Clausius–Mossotti relation

3
ε−1

ε+2
= α

ε0
. (186)

Thus, by considering the scattering at a single point rB , the integral reduces to

G(S)(r ,r ′,ω) = ω2

ε0c2
αB (ω)R(r ,rB ,ω) ·R(rB ,r ′,ω) . (187)

By plugging this result into the Casimir–Polder potential, we end up with the van-der-

Waals potential

UvdW(r A,rB ) =−ħµ2
0

2π

∞∫
0

dξξ4 tr [αA(iξ) ·G(r A,rB , iξ) ·αB (iξ) ·G(rB ,r A, iξ)] , (188)

where we used that r A ̸= rB to include to general Green function. We can interpret this

result again via an exchange of virtual photons. Caused by the ground-state fluctua-

tions of the electromagnetic field, a virtual photon is created at the position of particle

A, which propagates to particle B. Here, it interacts with this particle (αB ) before return-

ing to particle A and interacting with it. The sum (integral) of all these virtual photon

exchanges yields the van-der-Waals potential.

3.5 Van-der-Waals interactions in free space

In section 2.1.3, we calculated the free-space Green function. Considering two isotropic

particles, αA,B = αA,B 1, separated by the distance ϱ, then the trace over the remaining

Green functions can be carried out, and the van-der-Waals potential reads

UvdW(ϱ) =− ħ
16π3ε2

0ϱ
6

∞∫
0

dξαA(iξ)αB (iξ)g

(
ξϱ

c

)
, (189)

with

g (x) = (
3+6x +5x2 +2x3 +x4)e−2x . (190)

Analogously to the Casimir–Polder potential, we can approximate the van-der-Waals

potential concerning the relevant length scale. In the non-retarded limit, where the

separation is much smaller than the relevant wavelength, ϱ ≪ c/ω, the polarisability

restricts the integral to a region where g (ξϱ/c) ≈ g (0) = 3, leading to the well-known c6

potential

UvdW(ϱ) =−C6

ϱ
, C6 = 3

16π3ε2
0

∞∫
0

dξαA(iξ)αB (iξ) . (191)

In contrast, for larger separations, the dominant part of the frequency integral is re-

stricted to the electrostatic contributions, and we can carry out the remaining integral
∞∫

0

dξg

(
ξϱ

c

)
= c

ϱ

∞∫
0

dxg (x) = 23

4

c

ϱ
, (192)
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leading to the retarded van-der-Waals potential

UvdW(ϱ) =−C7

ϱ7
, C7 = 23ħcαAαB

64π3ε2
0

. (193)

These results are the simple free-space van-der-Waals potentials. If the particles are

embedded in a dielectric medium, these potentials need to be adapted concerning the

screening effects due to the absorption of photon energy bypassing the medium. The

access (or effective) polarisability models, see Ref. [6], considers a vacuum layer sur-

rounding the particles and compensate for its impact on the exchange of virtual pho-

tons. This is a local-field effect. Considering the interaction between two dissolved par-

ticles, one often speaks about effective screening models; see Ref. [7] for further details.
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