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SECTION

Introduction to dispersion
forces

This lecture series is dedicated to the general topic of dispersion forces: van-der-Waals
forces, Casimir—Polder forces and Casimir forces. We will focus mainly on van-der-Waals
forces and dive into the underlying theory of macroscopic quantum electrodynamics
to generate a fundamental understanding and see which consequences we can find,
for instance, by looking at large particle separations or by adding further objects such
as a third molecule, a solid dielectric surface, or a solvent. But first, let us recap your
knowledge about van-der-Waals forces.

1.1 Van-der-Waals forces and the four fundamental forces

Task 1.1 What do you know about van-der-Waals forces?

* Force between neutral particles (atoms, molecules, ...)
¢ Attractive force

e U=-Cg/r®

Let us have a closer look at these statements:

The van-der-Waals force acts between neutral particles. We know the four fundamen-
tal forces; see table 1: gravity, electromagnetism, and weak and strong interac-
tions. Where do we have to locate the van-der-Waals forces? The weak and strong
interactions cannot cause it because the typical range is on the nanometre to mi-

crometre scale (1072...107%m). Furthermore, it cannot be related to electromag-



netism because the interacting objects are neutral. Hence there are no charges
involved. Finally, is it gravity? — It cannot be gravity because van-der-Waals forces
are much stronger than gravity forces. But what does it mean? Is there a fifth
force, which is not known right now?' The short answer is "No!". The longer one
is "Not observed until now. The experimental and theoretical error bars still over-
lap that one does not find a mismatch with the current precision." Concerning
the location of van-der-Waals forces within the fundamental forces, it belongs to

the electromagnetic forces. Still, it is hidden in the classical picture illustrated in

table 1.
Gravity | Electromagnetism | Weak interaction | Strong interaction
Acting on mass charges quarks and leptons quarks
Range fod) fod) <107Ym ~107®m
Rel. strength 1 1036 10%° 1038
Long-range 1/r 1/r e "™ r r

Table 1: Overview of the fundamental interactions: gravity, electromagnetism, weak and
strong interactions concerning the corresponding property of the interaction objects
(acting on), their range, their relative strength (rel. strength) compared to gravity, and
their long-range behaviour.

The van-der-Waals force is attractive. Is this always the case? In the typical situation
where two ground-state neutral point-like particles are brought together in a vac-
uum, the resulting force is always attractive. However, we can see the restrictions
to the attraction of two particles. By (i) changing the environment from a vac-
uum to a liquid [1], (ii) considering anisotropic particles [2], or by (iii) considering

excited particles [3], van-der-Waals forces can be turned repulsive.

The van-der-Waals potential has a 1/7% dependency. The non-retarded limit (at short
distances) of the van-der-Waals potential follows an r~® power law. However, for
longer separations, it turns to a 7~ power law, the so-called retarded regime [4].
In addition, at more minor separations close to binding distances, higher-order
contributions start playing a role that turns the potential into a r~> power law,

known from the Casimir-Polder and Casimir potentials.

What determines the strength of the van-der-Waals forces? The van-der-Waals (Cg)
coefficient denotes the strength of the force. One can assume that this force is not
the same for all particles. This yields the question about the material properties
determining the Cg coefficient.

During the following lectures, we will examine these different questions about the van-
der-Waals forces. We have now seen the limits of the van-der-Waals potential with the

simple power law. In the following, we will derive this interaction from fundamental

IThere are considerations about the existence of a fifth force, see for instance: J. L. Feng et al. Phys.
Rev. Lett. 117, 071803 (2016).


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.071803
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.071803

principles and see how we can reproduce the known properties, how we can quantify
the limits mentioned above, and what we can learn beyond.
Within these first lines of the text, we already received several keywords:

Definition 1.1.1
Van-der-Waals forces are forces between neutral particles, such as atoms and
molecules. It is an electromagnetic effect. At short separations, it follows an r~°
power law (non-retarded regime). Its strength depends on the material proper-

ties.

1.2 Properties of atoms and molecules

Task 1.2 How do we distinguish between different particles?

Assume you get an unknown sample, either a gas, a liquid, or a solid. How do you
find out its chemical components? Which devices can you apply?

e Techniques: Chromatography, mass spectroscopy

* Physical quantities: material-specific excitations, mass

Typical investigation methods to distinguish between chemical components are based
on the emission or absorption spectra. The electromagnetic spectrum is unique for each
material. A molecular system is described by an infinite set of wave functions {y,} and

the associated energies” {E,} solving the stationary Schrédinger equation

Ay, =Ew,, 1)
with the molecular Hamiltonian
H=T,+ To+ Voo + Ve + Voo, 2)

which separates into the kinetic energy of the core T. and of the electrons T, and the
interaction potential between the electrons V.., between the cores V., and between the
cores and the electrons V,.. For this lecture series, we do not care about the explicit
solutions of Eq. (2). Several methods are available to solve the Schrodinger equation,

such as density functional theory.

Definition 1.2.1
Properties of wave functions: The wave function is a complex probability distri-

bution, which means that they are normalised

fd?’rw;(r)wn(r) =1. 3)

Furthermore, we assume the corresponding energy eigenvalues to be non-

ZNote that we consider atomic state leading to a discrete set of energy eigenvalues. For larger
molecules, the energy eigenvalues turn from a discrete set to a continuous energy spectrum, leading to

more complex equations of similar content.



degenerated, meaning that they are pairwise distinct
Ey<E <E)<.... 4)

This property yields the orthogonality of the wave functions, which reads as

fd?’ru/ﬁ(r)wm(r) ST (5)
with the Kronecker delta
1, ifn=m
5nm = . (6)
0, else

One commonly uses a shorter notation for the wave function, known as bra—ket

notation or Dirac notation

bravector: v, (r) — |n)

ket vector: () — (ml|

The bracket
(nlm) = fdsrw’,;(r)wm(r) =0nm (7)

denotes the dot product. One way to understand this notation is related to vector

operations. The ket vector corresponds to a column vector

ni
np
lmy=1 |, (8)
ny
and the bra vector to a row vector
— * * *
(ml—(m1 mJ ... mN), 9)

illustrating the relation of the dot product according to matrix multiplications. In
this picture, we can easily see that a scalar quantity, such as energies Ej,, corre-
sponds to measurement results; a vectorial quantity, |n), corresponds to states;
and, when we look at the Schrédinger equation, H|n) = E,,|n), that a matrix cor-
responds to an operator. Furthermore, the measurement result and the matrix

are related to each other: each measurable quantity A has its unique operator A

A={(n|Aln). (10)

When we now come back to the Schrédinger equation for the free particle, it reads in
Dirac notation
Hiny=E,|n). (11)

By multiplying this equation with the bra vector (n| for the right and summing over all



states, this equation transforms to
Y Hiny(nl=)_ E,ln)(nl. (12)
n n

The Hamilton operator is independent of the state |n), and thus, the sum commutes
with the Hamiltonian

HY |Iny(nl=| H=Y E,ln)(n|. (13)

s
=1

As the sum over all projection operators |n) (n| yields the
unitary operator; we have found the series expansion of E,
the particle’s Hamiltonian concerning the energy eigen-
values. Figure 1 illustrates the energy level scheme of an
atom. By ———3)
We now have seen how the Hamiltonian of a free particle
can be expanded in a series of eigenvalues and eigenvec-
tors. At this point, its advantage is hard to recognise. It Est —12)
simplifies the following calculations because we do not

. - . Ert — 1)
need to worry about its explicit solutions. However, we

initialised this part with the question about identifying
different chemical components and mentioned that the Fi .

igure 1: Energy levels of an
electromagnetic response spectrum of each material is a

unique fingerprint. On the microscopic level, the wave atom.

functions are special for each particle. To this end, a relationship between the micro-
scopic wave functions and the macroscopic spectra has to exist, connecting this unique-
ness over the different scales.

The complex dielectric function describes a macroscopic spectrum
e(w) =€ (w) +ie" (w), (14)

with its real and imaginary parts, €'(w) and €”(w). The existence of an imaginary part is
a bit weird as we look at realistic materials. Its origin is realistic. When describing the
optical properties of a solid surface, we consider its "colour", which is caused by the re-
flection of light and the absorption of light, typically leading to a warming of the object.
When we want to describe both effects within one equation, it is useful to introduce a
complex refractive index n(w) = n'(w) +in" (w). A propagation wave, propagating in the

direction ey, is described by
E(r, 1) = Ege (0= ¢n@r-e) (15)
By inserting the complex refractive index, its imaginary part factorises out

E(r, t) = Ege '(@t-¢n'@redg-cn"@r-e (16)



leading to the damping of the wave. Thus, the imaginary part of the refractive index
is called the absorption coefficient. Due to the relation between refractive index and
dielectric function

n(w) =vew), (17)

the dielectric function is complex as well.

The dielectric function €(w) is traditionally considered as a macroscopic quantity, and
thus it cannot be related to microscopic properties directly. In a broader sense, the di-
electric function is an intensive property that does not scale with the extension of the
object. The corresponding extensive quantity is the polarisability a(w). Both quantities

are related to each other via the Clausius—Mossotti relation

cw -1 _ & Nia;(w)

>

E(w)+2 B i1 3éo

) (18)

which is the extension to ./ components (Lorentz-Lorenz model), with the vacuum
permittivity £y, the number density of the ith component N; and its molecular polaris-
ability a; (w).

The polarisability a(w) characterises the electromagnetic response of a particle by ap-

plying an external electric field E via inducing a dipole moment
d=a-E. (19)

It is usually a tensorial quantity. However, in the following, we restrict ourselves to the
consideration of isotropic polarisabilities

a=al, (20)

with the three-dimensional unit-matrix, [ = diag(1,1,1). The frequency-dependence of
the polarisability of a particle excited to the nth state is commonly described as a series

of Lorentz oscillators

1 d,.d dy,d
an(w) — _Z nki kn n kni nk , 21)
R | wkn—0—5Tn+T8) 0 +w+5 T, +Tk)
with the reduced Planck constant 7, the transition dipole moments
dnm = (mld|n) = e(m|F|n), (22)
the resonance energies (respectively frequencies)
Emn=hwmn =N [Ey,—Ep) =h[(n|Hiny - (ml H|lm)], (23)
and the decay rates
@3 ) |
I'y= Z Fpum = Z e 2 (24)

m<n m<n 377”5003

which known as the Einstein coefficient or Fermi’s golden rule.

3Note that the considered volume is spherical, which can be seen in the Mie reflection coefficient on
the left-hand side of the equation, see for instance J.D. Jackson Classical Electrodynamics — Chapter 4:

Multipoles, Electrostatics of Macroscopic Media, Dielectrics.



Task 1.3 Typical strength of a transition dipole moment?

The dipole moment d is charge g times charge separation r, d = qr. A typical
charge in an atom is an electron g = e, and the typical separations are related to
the Bohr radius r = ag. Hence, d =1.6-107°C x5.3-107'm ~ 8.48-1073Cm.
Polarisability: optical frequency v = @ (10'* Hz)

~—1 -30 2 1 _ -39 2. 2/7 _ —39 2
— @~ sarioys * (8:48-1070Cm) " x o = 1.1:1079 C*'m?/] = 1.1-107% Cm?/V




SECTION

Quantisation of the
electromagnetic fields

In the last lecture, we saw that the van-der-Waals forces occur between polarisable par-
ticles and are mediated via the electromagnetic field. This means that classically, we
would need a permanent electromagnetic field inducing dipole moments in the molecules
that can interact. However, we also know that the van-der-Waals forces also arise in the
absence of electromagnetic fields. Thus, we need another mechanism to induce the
dipole moments.

Task 2.1 Dimension analysis of the Casimir force

The Casimir force is an attractive force between two parallel perfectly conducting
plates. We already know that the force is a quantum effect, thus the force density,
[F/ Al = N/m?, should depend on the Planck constant, [i] = Js. Furthermore, it is a
vacuum-electromagnetic effect, meaning that it should include the speed of light,
[c] = m/s. Which power law scales the Casimir force density with the distance
[d] =m?

[h-c] = Jm=Nm?
i

Cc

Js?/m = Nms?

Obviously, the product between 7 and ¢ needs to be chosen to get rid of the time.
Furthermore, the force density has to be proportional to this product

goc hcd™. (25)




Finally, the units of this equation are
N/m? = Nm?*?,

hence, the force density scales with a d~* power law

F 7 1

2.1 Maxwell’s equations

The microscopic Maxwell’s equations are:

Gauss’s law describes the relationship between a static electric field and electric charges:
a static electric field points away from positive charges and towards negative charges,
and the net outflow of the electric field through a closed surface is proportional to
the enclosed charge, including bound charge due to polarisation of material. The

coefficient of the proportion is the permittivity of free space

o)
80.

V-E(r)= (27)

Gauss’s law for magnetism states that electric charges have no magnetic analogues,

called magnetic monopoles, i.e. no single pole exists. Instead, the magnetic field

of a material is attributed to a dipole, and the net outflow of the magnetic field

through a closed surface is zero. Magnetic dipoles may be represented as loops

of current or inseparable pairs of equal and opposite "magnetic charges". The to-

tal magnetic flux through a Gaussian surface is zero, and the magnetic field is a
solenoidal vector field

V-B(r)=0. (28)

Faraday’s law describes how a time-varying magnetic field corresponds to the curl of
an electric field
VxE(r)=-B(r). (29)

Ampere’s law with Maxwell’s addition: The original law of Ampere states that magnetic
fields relate to electric current. Maxwell’s addition states that they also relate to
changing electric fields, which Maxwell called displacement current

V x B(r) = pogoE(r) + poJ (r). (30)

The set of these four equations (27)-(30) describes the propagation of electromagnetic
fields within a given system.

10



2.1.1 Electrodynamics in free space

In the absence of charges p(r) = 0 and currents J(r) = 0, the Maxwell equations simpli-

fies to
V-E(r)=0, (31)
V-B(r)=0, (32)
VxE(r)+B(r)=0, (33)
VXB(r)—izB(r):o, (34)
C

where we used gy o = ¢ 2. To simplify this system of equations, we introduce the scalar
potential ¢(r) and the vector potential A(r) according to

E(r) = —-Ve(r) - A(r) (35)
B(r)=Vx A(r). (36)

Thus, egs. (32) and (33) are automatically fulfilled, and the remaining equations yield to

~A@([r)-V-A(r) =0, (37)
izwp(r) + iz}i(r) —AA(r)+VI[V-A(r)] =0. (38)
c C

Note that potentials are never unique. For instance, potential forces F(r) = -VU(r).
When we add constant energy E to the potential U(r) — U(r) + E, the force does not
change because VE = 0. In the case of the scalar and vector potentials, this "constant" is
expressed by an arbitrary scalar field A(r) transforming the scalar and vector potentials
via

Q) — @) —Ar), (39)
A(r)— A(r)+VA(r). (40)

This is a gauge transformation and introduces an additional degree of freedom to sim-
plify the equations. In non-relativistic electrodynamics, it is commonly employed the
Coulomb gauge

V-A(r)=0. (41)

This gauge is often referred to as the transverse gauge, which is motivated by the fact
that electromagnetic waves in free space only have transversal components meaning
that the wave oscillates perpendicular to the direction of the propagation k. The relation

between this fact and the gauge (41) can be seen by its transformation into Fourier space

k-A(k)=0. (42)

Definition 2.1.1
Vector algebra
A plane is given by the equation

ax+bc+cz+d=0, (43)

11



with the off-set d = —axy— by — czy. Furthermore,

a plane is characterised by its normal vector [”
n= I>}

n=|b]l. (44)

Thus, a plane can also be given via

X0 a
yI=|»wll|l |b|=0=[r—-ro]n, (45) Figure 2: Normal vector
z A c of a plane. Figure taken

from https://mathworld.

ing that all point bel to the pl
meaning that all points r belong to the plane .. -~ .. ...
whose relative vectors (relative to a point in the

plane ry) are orthogonal to the normal vector.

Hence, Equation (42) means that the vector potential is orthogonal to the wave vector,
which we denote as transverse.
By applying the Coulomb gauge (41) to the field equations (37) and (38), they reduce to
an uncoupled Laplace equation

Ap(r)=0, (46)

and a Helmholtz equation
1.
—A(r)-AA(r) =0. (47)
c

The solutions of the Helmholtz equation are plane waves

A(r,t) = Z —— e, (K)o |ugee'® 700 + yy_emikr-on) (48)

)3/2

with the two polarisation vectors e, (0 = 1,2) spanning the plane orthogonal to the wave
vector k and the amplitude of the partial waves uy,."
The energy of the field is given by the Hamilton function (or Hamiltonian)

1
:—fdsr
2

Plugging in the Coulomb gauge (41) and using the orthogonality of the polarisation vec-

(49)

1
eoE?(r) + — B?(r)
Ho

tors ey - e, = 85, and the relation (k x ey) - (k x ey’) = k? (ey - e,)) = k*0 44/, leaves us
with

H=2¢gg Zfdgkw | Ujeor | - (50)

These complex-valued functions uy, can be split into their real and imaginary parts

Gro = \/%(ukg + LLZU) y  Pko = —iw\/%(ukg - ulta) ) (51)

4Note: real solutions of a wave equation consist of sin and cos function. Complex numbers help to

simplify two equations into one A = ue'¥ + u*e ¢ = yel¥ + (uei"’)* = 2Re (ue'?). Thus, A is purely real,
AeR.

12
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which yields the classical Hamiltonian in the form

1 2
H= Y fd3k(pig+w2q,2€0). (52)
o=1

Thus, we have converted the Hamiltonian for the free electromagnetic field (49) into an
infinite sum of uncoupled harmonic oscillators with frequencies w = kc. The functions
gxo and py. are thus analogous to the position and momentum of a classical particle of
mass m attached to a spring with spring constant D = mw?.

Definition 2.1.2
The classical harmonic oscillator describes the motion of a particle in a
quadratic potential V(x) = %sz with spring constant D. To derive the equa-
tion of motion, we start with the Hamiltonian of the system. The Hamiltonian
describes the total energy of the system, and in the case of a particle of mass m, it
consists of two parts - the kinetic energy T and the potential energy V,

H=T+V. (53)

The kinetic energy is given by the momentum of the particle p

T=—. 54
2m (54)
Thus, the Hamiltonian reads
2
1
H=L_ 4 2Dpx? (55)
2m 2

The corresponding equations of motion are according to Newton’s laws:

The momentum change is given by force acting on the particle

4 (56)
P="ax’
and,
The position change is given by the momentum acting on the particle
=2 (57)
m

Combining both equations, we derived the equation of motion for the harmonic
oscillator
fE—=——===0. (58)

By looking closer to the unit of the spring constant [D] = N/m = kg/s?, we can
see that the prefactor D/m has a unit of a frequency square [D/m] = 1/s? = Hz?.
Thus, we can define the frequency of the harmonic oscillator via w = vD/m. To
this end, the equation of motion reads as

i=-w’x. (59)

13



When we neglect the prefactor, we observe that this differential equation means

that we have to differentiate a function twice and obtain the same function with

a minus sign in front. Two functions fulfil this relation — Sine sin and Cosine cos,
d? d?

@sinx:—sinx, @cosx:—cosx. (60)

By using the chain rule to include the frequency w, we see that the solutions are
harmonic oscillation
x(t) =Cisinwt+ Cycoswt. (61)

Take home message

A harmonic oscillator always has a Hamiltonian of the form

H=—+—7x", (62)

quadratic in p and quadratic in x.

Task 2.2 Canonical transformation of the harmonic oscillator

Consider the transformation of the variables

; p | mox
V2mo V2mo'
i} p  mwx

+i )
V2mo  V2mo

and transform the Hamiltonian (62) into the complex plain.
Solving the system of equations to get expressions for p and x

. 1 3
X =1 a—a ).
me( )

And inserting the result into the Hamiltonian yields

H=waa* =wlal*. (63)

Take home message

A harmonic oscillator can always be expressed via a complex

Hamiltonian of the form
H=wlal?, (64)

with complex amplitude a, whose real part is proportional to

the momentum and imaginary part to the position.

14



2.1.2 General solutions via dyadic Green function

In the previous section, we derived the mode structure for the vacuum (in the absence
of charges and currents). To include the presence of absorbing materials, one needs
to solve the Maxwell equations (27)—(30) for a given system. The Maxwell equations in
this form are charged-based due to the explicit consideration of charge density p(r) and
charge density current j(r). To introduce dielectric objects, one separates the charges
into free and bounded charge density

O(r) = Pfree (1) + Pbound (1), (65)

analogously for the currents. The bounded charges are considered as a source for the
polarisation
VP(r) = @bound(r)- (66)

The continuity equation and the corresponding current yield the magnetisation
Jbound(r) =V XM(")"'P(")- (67)

Thus, we can absorb the consideration of the bounded charges by adding the polarisa-
tion P and magnetisation M to the electric and magnetic fields, leading the displace-
ment field

D(r)=¢yE(r)+P(r), (68)
and the magnetisation field
H(r)= LB(r) -M(r). (69)
Ho

Thus, we can write the macroscopic Maxwell equations

V- D(r) = Qfree(r), (70)
V-B(r)=0, (71)
VxE(r)=-B(r), (72)
V x H(r) = jiee(r) + D(r). (73)

Assuming that the medium responds linearly and locally to externally applied fields, we

can write their responses in the form

P(r, 1) :eofdr)(e(r,r)E(r,t—T), (74)
0
1 o0
M(r, 1) :‘u—fdrxm(r,r)B(r,t—r), (75)
0
0

with the electric and magnetic media response functions y. and yn,, respectively.
We need to have conditions for unique solutions to solve this system of differential

equations for a given geometry. These conditions are the so-called Maxwell boundary

15



conditions which mean the continuation of the fields at interfaces and read

ny2 x (E;—E;) =0, (76)
ny2-(D2—Dy) =012, 77
nyp;-(B2—B;) =0, (78)
ny2 x (H, — Hy) = ji2, (79)

with the normal vector of the interface n,,, the surface charge density o, and the sur-
face current density j;». Finally, when we want to consider a specific system, we need to
solve this system of equations together with the boundary conditions. To stay as general
as possible, we first consider the temporal Fourier transform of the Maxwell equations

V- D(r) = Ofree(r), (80)
V-B(r)=0, (81)
Vx E(r) =iwB(r), (82)
Vx H(r) = jree(r) —iwD(r). (83)
Now, we can plug in the displacement field (68) and the magnetisation field (69) into (83)
leading to
V x [l_i—sz(r)] = jiree(r) —iweq (1+ ye (1) E(r). (84)
By introducing
e(rw)=1+yelr,w), pr,w)= m, (85)

and substituting the magnetic field B via Eq. (82),
we obtain the vector Helmholtz equation

w?e(r,w) o
VxE(r,w)—TE(r,w) = 1w jree (W) ,

(86)

V x

u(r,w)

whose solution can be written as

E(r,w) :ia)fde’r’G(r,r',w) - Jiee ('), 87)

with the dyadic (tensorial) Green function obeying
Figure 3: Separation of the Green
function G into the free (bulk)

(88) propagation G and its scattering
The Green function techniques allow us to con- par; G,

w?e(r,w)

V x V x 2

Gr,r',w)=86r-r".

ur,w)

tinue with theory without explicitly considering

the fields of the specific system. Of course, when we want to apply this theory to any
system, we need to take care of its solution. But for the moment, we found a way to
express the complex solution of Maxwell’s equations within one quantity.

The Green function is known as the field propagator. It has to be read from right to left,
meaning that the source point is r’ and the final point is r. It can be separated into the

free propagation G and its scattering part G
Gr,r,0) =GO, r,0)+GOr, 1, v). (89)

Figure 3 illustrates this separation.

16



2.1.3 Free-space Green function

One important solution of the vector Helmholtz equation is the free-space or bulk Green
function, which describes the propagation in a spatially homogeneous medium € (r, w) =
€(w) and p(r,w) = p(w). Thus, the Helmholtz equation simplifies to

[VxVx-k5] GO, 1, 0) = p@)dr -1, (90)

with the wavevector
w
ko = z\/e(a))u(w). 91)

It can be seen that the Helmholtz equation only depends on relative coordinates g =
r — r' leading to a spatially local Green function G (r,r’,w) = G? (r — r',w). Defining
the Fourier transform of the Green function

G(O)(k w) :‘[ﬁ(}(o) (o w)e—ik'Q (92)
’ (2m)3/2 ’ ’
the Fourier transformed Helmholtz equation reads
—k x k x GO (k,0) - k.G (k, w) = p(w)1, (93)
with the three-dimensional unit matrix 1 = diag(1,1,1).

Definition 2.1.3
Projection operator:
The projection of a vector v onto another Y4
vector w is the component of v into the di-
rection of w. Thus, we want to create a vec- \
tor v, pointing in the same direction as w \
having the length of the projection of v onto \
w. The length can be determined by the dot
product
=22

lw|

The direction is given by the unit vector cor- -

responding to w
w Figure 4: Projection of the vector

ey=—.
Y w v (green) on the vector w (red)

Combining both, we can obtain the projectionyields the vector v,,.
vy=ley, = wvw _ wiviﬂ = Ml)i,
lw| |w| lwi*  |wl®
where we used the commutation of scalar quantities. The first term on the right-
hand side has the structure of a matrix with the components
w j Wi

Thus, we can write the projection of the vector v as a matrix product

vw:Pw‘v, (94)
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with the projection operator
ww

lw|?’

onto the vector w. Such projection operators appear very often; for instance, the

12y (95)

atom flip operator in the molecular Hamiltonian (13) projects any state onto the
eigenbasis |n) (the denominator is one due to the normalisation of the state vec-
tors).

By introducing the projection operator onto the wave vector k

_ kk
=
we can write the double cross product as
kk
—kxkx:kz(l—ﬁ), (96)

separating the field into its transverse components. Thus, we can write the bulk Green
function as

GO, w) = (w)fdk3eik'9 1 ( _ﬁ)_i@ (97)
e =H @m)32 | k2-k2\" k2] k2 kP
This integral can be carried out and yields
(w) Hw) Q0| ik
6O =-E25(0) - [ ko)1 - g(kp)= | e'e, 98
(0, w) 32 (@) kg f(kp)1—-g(kp) 0 (98)

with f(x) =1-ix—x? and g(x) =3 —ix— x2.

2.2 Quantisation of the electromagnetic field

In the previous chapter, we discussed the classical Maxwell equation describing classical
Electrodynamics and introduced the Green function as a general solution. Furthermore,
we have already considered parts of the Hamiltonian mechanics for the electromagnetic
field, which will be extended in this section to quantise the electromagnetic fields. Be-
fore we derive the quantised fields, we will take a special view on the linear response of
a medium (74).

2.2.1 Fluctuation-Dissipation theorem
The response of a system R with respect to an external force F can be written in general
as a convolution with its corresponding response function y

t

R(t) = f y(t—tF(t)dr . (99)

—00

The response function y characterises the system. In the framework of differential equa-
tions, it describes the particular solution.
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Definition 2.2.1
Linear response function of the harmonic oscillator:

The differential equation of the damped harmonic oscillator reads
$+20%+wix = f(1), (100)

with the damping constant §, the angular frequency w, and the driving force f(¢).
Its solution can be written as the superposition of the solution homogeneous
equation

¥ +28%+w5x=0, (101)

and a particular solution of the inhomogeneous equation. The homogeneous so-
lution can be found by applying the ansatz x(f) = e*? leading to the characteristic
polynomial

A2 +25A+w5=0, (102)

Ap=-6+1/62-wj. (103)

Thus, the homogeneous solution reads

with the solution

Xhom(2) = CreM! + Cre?!, (104)

showing an exponential decay when the damping is stronger than the angular
frequency 6 = wy. The coefficients C; » have to be fixed by the initial conditions.
For the driven oscillator, one needs to add a particular solution, satisfying the
entire differential equation. For a given driving force f(f), one usually guesses
a particular solution xpar. If one does not find a good guess, one applies Green
function techniques

t
Xpart (1) :fdt’g(t— ), (105)
0
where the Green function satisfies the differential equation
gD +268(1) +wig(H) =8(t—1). (106)

Fourier transforming this equation, similar to the calculation of the bulk Green
function in Sec. 2.1.3, we transform the differential equation into an algebraic
equation

1
2 . 2
~w°g(w) +20iwg(w) + (w) = . (107)
w gw iwg(w)+wigw VT

Finally, we find the response function in Fourier space

1 1
V21 w3 — w? + 2i6w )

gw) = (108)

Here, we can see that the response function has an imaginary part related to the
oscillator’s damping. Damping is a dissipative process that is connected to energy
loss.
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In the previous definition box, we have seen that a dissipative system always has a
complex-valued response function, Im (y) # 0.
Every quantity A can be separated into a mean-value (A) and a fluctuation A’

A=(Ay+ A, (109)

where different methods exist to estimate the mean value, see table 2.

t+1/2

Time-average (A(t)y=1 [ dr'At)

T
t—1/2

Volume-average  (A(1)) = % Sd3rAwr 0
v
Ensemble-average (A(f)) = % YN A0

Table 2: Overview of a few averaging schemes.

The Fluctuation-Dissipation theorem connects the fluctuations in a system with its dis-
sipations. This connection relates the fluctuation correlation function ( A'(£) A'(¢') ) with
the imaginary part of the response function via the power spectrum being the Fourier

transform of the fluctuation correlation function

1 .
S(w)=——= f dre (A" (nA'(0)) . (110)
= ( )
The Fluctuation—Dissipation theorem for a classical field reads
2kgT
S(w) = -2 Imy (). (111)
)
Definition 2.2.2

Summary of Dissipation-Fluctuation theorem:

Fluctuations and dissipations go hand in hand: When a system has fluctuations,
it automatically dissipates and vice versa. The linear response function of a dissi-
pative system is always complex-valued.

As we are dealing with absorbing media, which means that the system absorbs energy

(dissipation), we need to introduce noises (fluctuations) to the responses (74)
o0
P(r,1) :aofdrxe(r,T)E(r,t—r)+PN(r, 1), (112)
0

with the noise polarisation Py(r, t) which results from a noise charge density
on(r,w) =-V-PN(r,w), (113)
and its associated noise charge current density
Jn(r,w) = —iwPN(r,w)+V x MN(r,w), (114)

with the noise magnetisation My.
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2.2.2 Langevin noise approach

In the absence of free charges and currents, Efee(r,w) = 0 and jeee(r,w) = 0, respec-
tively, the electric field is induced by the noise charge current density

E(r,w) :i,uowfdgr’G(r,r’,w)-j(r',a)), (115)

where the current is induced by the electric field itself via the generalised Ohm’s law
jro = fd3r'Q(r, r'w)-E(r' o)+ jn(r,o), (116)

with the complex conductivity tensor Q(r, r’, ).

Until this point, all consideration regarding the electromagnetic field regarded classical
electrodynamics. To quantise the field, we apply the second quantisation scheme to the
noise charge current density as canonical variable jy — jn. According to this quanti-
sation scheme, we need to calculate the commutator, which we get from the classical
Poisson brackets

171, o
{intr,0),j50r, 0} = — |iner,0), 0,0 (117)

The Poisson brackets can be obtained from the Fluctuation-Dissipation theorem ac-
cording to (116)

{in(r, ), jj (0} = <260 - 0)ReQ(r, '), (118)
leading the Hamiltonian
A= nfdwfdz”rd?’r’j;(r,w) ReQ(r,r,w) - jn(r,w). (119)

Due to the residual of the commutator, we can conclude that the states ji(r,w) are not
orthogonal. We want to bring the Hamiltonian in the form (63). Introducing the trans-

frw = \/ h%’fdgr’K(r,r’,w) I w), (120)

we can write the Hamiltonian as

form

ﬁZZfdwfdgrhwa(r,w)-f(r,w), (121)
1
and the commutator as

[f(r,w),fr(r’,a)’)] —Sw-0)8r—r1". (122)

But this leaves the question about the transformation matrix K(r, r’,w). Details about
its construction can be found in Ref. [5]. We restrict ourselves to the consideration of
spatially local

ReQ(r,r',w) =ReQ(r,w)6(r —r'), (123)

isotropic
ReQ(r,w) =ReQ(r,w)1, (124)
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and inhomogeneous dielectric medium
Re Q(r,w) = ggwlmy (r,w). (125)
As K is the 'square-root’ of the ReQ
ReQ(r, 1, w) = f d3sK(r, s,0)-K (s, 1, w), (126)
we can evaluate it due to the abovementioned assumptions

K(r,r',w) = VeowImy(r,w)6(r —r)1. (127)

Thus, the electric field operator reads as

7 _: h w2 3./ / l .y
E(r,w) _1‘/71_&)?](1 r'\/Imy(r',w)G(r,r,w)- f(r,w). (128)

The ladder operators f and fT describe the dressed field excitations meaning photonic
excitations and media excitations. Therefore, they are often called polaritonic excita-

tions. Some important expectation values are

(frw)=(frv)=0 (129)
(fro)fa0)=(froffrw)=0 (130)
(Frro)fe,0)) = n@pr - rs-a)1, (131)

(foroft ') =mw +Dor-rsw-o)1,  (32)

with the averaged thermal photon number

1

ehw/(kB n_1 : (133)

n(w) =
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SECTION

Dispersion forces

In the previous sections, we looked closer at
the treatment of particles with the Hamilto-
nian (13) and the quantisation of the electromag-
netic fields (121). In this section, we want to anal-
yse the coupling between particles and fields via
the dipole coupling

Hy=-d-E. (134)
This consideration will guide us to the Casimir-
Polder interaction, the interactions between a sin-
gle particle and a dielectric object, and the van-der-
Waals interaction between two polarisable parti-
cles.

3.1 The Casimir-Polder potential

5M(w)= MM(w)

Figure 5: Scatch of the Casimir-
Polder interaction: a polarisable
particle a(w) interacts with an
uncharged dielectric object (solid
dark grey object) described by the
permittivity €(w) and permeability
Ulw).

The considered scenario is depicted in Fig. 5. Everything surrounding the particle with
polarisability a(w) (the dielectric object with permeability €(w) and permittivity p(w)
and the back-ground medium with €(i¢) (w) and py(w)) will be considered via the field

Hamiltonian Ar. The particle is described by the Hamiltonian Hj (index A for atom).

Thus, the combined system is described by unperturbed Hamiltonian

I:I():I:IF+I:IA,
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leading to the so-called Fock-states |0, {0}) = |0) |{0}), as the product of the single states.
The total Hamiltonian requires the interaction between both systems

H = Ay + Ay + Hipe. (136)
We will solve this equation perturbatively

E=-(0,{0}|d-E|0,{0}) (137)
5 . {0,{0}ld-E|k,1(r,0)) (k,1(r,w)|d - E|0,{0})
fd rdw +
hlwp—w)

(138)

The first-order vanishes due to Eq. (129). Similar to the cancellation for the field op-
erators, one can apply the selection rules for the dipole operator, which only captures
transition dipole moments. Transitions are from one state to another. As the initial and
final state are both the ground state, we do not find any transition. By writing the excited
field state as an excitation of the ground-state

Fffr,olop=10,w), (139)
we can evaluate the matrix element

(k, 1(r,w)|d - E(ra)10,1{0}) = (k| d|0) ({0} f(r, ) E(ra) [{O})
=d G (ra,r,0), (140)
where we applied Eq. (132). The remaining term in the nominator of Eq. (138) is its

complex-conjugated and transposed result. Together with the integral relation for Green
functions

h
fd3sG(r,s,w)-G*’T(s,r',a)) 'an)ZImG(r rw), (141)
we find the energy shift
dw pow?
Zf dOk'ImG(TAJ‘A,w) “do, (142)
T(wr—w

leading to the interpretation that the Casimir—Polder potential is proportional to the op-
tical local-mode density ImG(r 4, r4, w). Recalling the separation of the Green function
into its bulk and scattering part (89), we can split the result into position-dependent
part

d
Zf Wow doi TGS (4,74, 0) - di, (143)
T(wr—w

and a position-independent part

d
Zf ﬂ((:)'uow K ImGO (rg, 74,0) - dio . (144)
o

The latter can be evaluated explicitly by inserting the free-space Green function (98)
leading to the Lamb shift

2

Mo 3 2 mecC
AE =——) w;|doi|“In . 145
Lamb 67'[26; kl okl ( hwk ) ( )
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The position-dependent contribution is the Casimir-Polder potential, which can be ma-
nipulated further by using ImG = (G—G™)/(2i) and Schwarz reflection principle G* (w) =
G(-w*) leading

—00

[e.@]
dw dw
UCP(TA)=&Z f —f
207 % J Wi+ w J Wi —w

wrwdyr-G® (14, 14, 0) - diy. (146)

These integrals can be flipped to the imaginary
frequency axis by applying contour integral tech- e
niques. The Green function is a so-called holomor-
phic function, meaning it has no divergencies in
the upper complex half-plane. Thus, the integra-

tion along a closed contour in the upper half-plane

. Rew
always vanishes

Figure 6: Contours for integrat-
fG(r, r,w)do =0. (147) . . )
ing the Casimir-Polder potential

By choosing the integration paths as depicted in © flip from real to imaginary fre-
Fig. 6, quencies.

1st path: along the positive real frequency axis, followed by the angle from 0 to 7/2
along the infinite line and going back along the imaginary axis

2nd path: along the negative real frequency axis, continued via the infinite line over the

angle from = to 7/2, and again going back along the imaginary axis,

both integrals can be turned onto the imaginary frequency axis, leading to

X 2
) .
Ucp(ra) = @Zfdf zk’f Sdor -G (ra,74,18) - do (148)
4 k 0 (J)k+€

At the beginning of this chapter, we mentioned the interaction between a polarisable
particle and a dielectric object. Hence, the final step is to convert the transition dipole

moments to the ground-state polarisability via

diod d
kodor doi k0. (149)
W+ +ie o-wg+ie

1
o= 1T

By using the relation a-A-b = a; A;jbj = bja; A;j = tr[(ba)-A], we find the Casimir-Polder
potential

h o0
Ucp(ra) = # f e tr[a(id) -G (14, r,i8)] . (150)
0

In contrast to the previous result (142), this equation (150) contains the entire scatter-
ing Green function instead of its imaginary part. In this sense, we can interpret the
Casimir—Polder potential as an exchange of virtual photons. The Green function is the
field propagator for classical fields and the photon propagator for quantised fields. The

ground-state fluctuations of the electromagnetic field spontaneously create a virtual

25



photon at the particle’s position. This virtual photon is emitted into the entire space,
reflected at the surrounding interfaces and propagates back to the particle (equal posi-
tion arguments in the Green function, G(ra, ra,w), also called coincidence limit). The
virtual photon interacts with the particle by reaching the particle, expressed by the po-
larisability. These vacuum fluctuations occur at all frequencies. For this reason, we have
to sum (integrate) over all frequencies. A virtual photon is a quasi-particle, meaning it
does not exist freely. It only appears for interactions with other objects. But it behaves
like real photons and thus can be manipulated like a real photon. These manipulations

are, for instance, reflections at interfaces or absorption by media.

3.2 An atom in front of an infinite half-space

In the case of an atom in front of an infinite half-space, we need the Green function to
reflect an electromagnetic wave at a single interface. The corresponding Green function

can be calculated analytically and reads for an interface located in the z = 0-plane

-y rses+es_+rpep+

i A2k skt

GI()SI)(I’,T/,(U): — Felk (r—r)+iky (z+2") 1 1 1 e;?_ , (151)
T

1

with the Fresnel reflection coefficients for s-polarised waves

Kkt
F¢=——7, (152)
Uk ks
and for p-polarised waves
_ Egkf‘—&‘lkzL (153)

P= ezklL +51k2L '
and the corresponding polarisation unit vector ey ;, +. The indices at perpendicular wave
vectors and the superscripts at the polarisation vectors indicate the region (medium).
They are 1 for z > 0 and 2 for z < 0. The parallel wave vector is parallel to the plane

k! 1 e,. The z-component of the wave vector reads
kb =1ej— —kI%. (154)

By introducing spherical coordinates for the k! integral, k = k!l (cos ¢, sin ¢, 0), one finds

egi = ey x e, = (sing,—cosy,0), (155)
and .
. c .
el = k_] (k” e, F kjLeku) = 0T (Trkf cos ¢, ikj_ sing, k”) . (156)
Thus, the dyads in Eq. (151) read
sin? ¢ —singcosg 0
ei+e}_ =|—singcos¢ cos? ¢ of, (157)
0 0 0
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and

) kllzcosz(p kfzsin(pcosqo —k”kfcosqo
c
e, e, =-— ki’singcosgp  ki'sinfp  —klkising |, (158)

p+p- =7 2,
! k! kf' cos k! kf' sing —Kl?

and the angular integral can be carried out. As the Casimir-Polder potential (150) lives
on the imaginary frequency axis, we need to substitute w = i, and we observe that the

perpendicular wave vector turns purely imaginary

2 2 2
1 w 2 ¢ 2 . ¢ 2 .
kj —\/ej—cz — k- = \/—gj—cz—k” ——1\/£j—62+k” =ik, (159)

and we call its imaginary part x ;. Consequently, the reflection coefficients turn real

ki —Kky €Ky — €1Ky
Fs=—"T——"T» 'p=—T—"TI- (160)
Ky +K; £2KT +E1K;

By applying the coincidence limit r’ — r, the Green function gets exponentially damped

(evanescence waves). Finally, the Green function reads

2
7 klax! L 00 e 000
G“(rA,rA,lé) e 2zl 1o 1 ofl-2=]0 «2 o ||. asn
81 K1 &2gy 1 )
0 000 0 0 2kl

Inserting this result into the Casimir-Polder potential (150), assuming an isotropic par-

ticle @ = a1l located in vacuum &, = 1, we find the Casimir-Polder potential

2.2\ (i
_ K=Ky xk“c”) e(ié)x — x>
U = d dxe %4 | ——= 4+ (1-2 , (162
cp(za) = f 44 a(lf)f Ke P ( ez )s(icf)K+1<2 (162)
éle
with the imaginary part of the wave vector in the second medium
&2
K2 =1/ () -1]1 = +x2. (163)
c

In the non-retarded limit, when the distance between the atom and the interface is
much smaller than the dominant wavelengths z4 < c¢/®. Thus, the dominant contri-
bution to the integral arises from large wave vectors due to the exponential function.

For this reason, we can approximate the perpendicular wave vectors to be equal
Ko =K, (164)
leading to the cancellation of the reflection coefficient for s-polarised waves, r; = 0 and

the reflection coefficient for p-polarised waves becomes x-independent

Ucp(z4) = — @) -1 f dick2e 22 (165)

e(i) +1
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By shifting the lower bound of the remaining integral to 0, the integral can be carried
out analytically and results in the well-known Cs-potential

Cs
Ucp(z4) = ——, (166)
ZA
with
£(if) -
Cy= ff (o) 2i) =1 (5)+1 167)

In contrast, for larger separations z4 > c/ o, we can restrict the frequency integral to be
dominated by its static contributions, leading to the C4-potential

Cy

Ucp(z4) = ——, (168)
ZA
with
_ 3hca(0) r (2 )8(0)1]— W2-1D+€(0) 1 v-—+v@*-1)+¢€(0)
' eane 0 0oV Dre® Yo+ VZ-1+e©
(169)
The different approximations are depicted in ., .
Fig. 7. It can be observed that the non-
retarded approximation is only valid for sep- 3 0 //
arations smaller than 10 nm. The retarded E& -10°F é// 1
potential has a small deviation concerning > 165 /
the exact solution, which is caused by tem- o

perature. The largest deviation of both ap- 107 10° zlig':n 10° 107
proximations is around 100 nm. [—exact—nonretarded —retarded|

Figure 7: Casimir-Polder potential for

3.3 Born Series expansion an atom in front of an infinite half-
In the previous chapters, we derived the SP3¢® exact solution (Eq. (43); blue

Casimir—Polder potential in terms of field line), retarded potential (Eq. (168); yel-

low line) and non-retarded potential
(Eq. (166); red line).

propagators (Green function of the vector
Helmholtz equation). We applied the theory
to the simple case of an atom in front of an infinite half-space. The Green functions
are analytically known for planarly, cylindrically and spherically layered systems. Fur-
thermore, the solution in orthogonal elliptical coordinates exists. However, most of the
interesting scenarios have other geometries. For this reason, one needs to find ways to
approximate the scattering Green function for arbitrary geometries. Beyond numerical
solutions, for instance, calculating the mode structure via COMSOL or calculating sur-
face currents via scuff-em, approximation methods exist. For instance, by combining
known geometries, such as two cylinders or a sphere and a plane, one usually applies
mode-matching techniques that develop the Green function of one object in the shifted
basis of the others. For periodic structures, one often uses the Rayleigh series expan-
sion. This expansion develops the field in plane waves and obtains effective reflection
and transmission coefficients for each mode.

In arbitrary geometries, the Born series expansion is typically the method of choice.
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We are interested in the solution of the vector r
Helmholtz equation for a given system represented
by the spatial dielectric function

|
|
|
G(r,r'\w) =8(r—r"). (170) L /_J .

i |
P /S// &
/ S/

w2
V xV x ——Zs(r,w)
C

To solve this system, we introduce a reference

Green tensor satisfying the Helmholtz equation

(bulk, vacuum, layered media, ...) Figure 8: Sketch of the Born se-
) ries expansion for the scattering at

GO, r,w)=8(r-r).  acube.
(171)
One typically uses the bulk Green function and, on molecular, atomic or even sub-

w
VxVx——¢g(r,w)
C

atomic scales, the vacuum Green function. Calculating the difference between both
equations yields

w? w?
Vx Vx ——£(r) GO, r) = ?58 GO, r)+G6¥r, 1], (172)

with the difference dielectric function
oe=0d¢e(r,w)=¢(r,w)—¢eo(r,w). (173)

Thus, equation (172) shows that the wanted Green function G® is induced by the refer-
ence Green function G with the inhomogeneity

2
‘;’—255 GO, )+ GO (r, )] . (174)

Finally, we can write its solution formally as a convolution of the fundamental solution
with the inhomogeneity

2
GO, 1, w) = f Bs6O(r,5,0)- 506 [60s, 1, 0) + GO (s, F w)] . (175)
C

The resulting integral equation is typically solved iteratively. Its first-order term is given

by neglecting the scattering Green function in the integrant
S w?
G (r,r,w) = f &*sG?(r,s,0)- —6:G” (5,1, 0). (176)
c
The next order can be obtained by plugging in the result of the first order in the integrant

2
w
G;S)(r,r’,w):fdgsG(O)(r,s,w)-?ée G(O)(s,r’,a))+G(ls)(s, rwl, (177)

and so on. This series expansion is equivalent to the Dyson series in Quantum Field
Theory. The free-space Green function is typically considered in the Born series expan-
sion, illustrated in Fig. 8. The scattering from the source point r’ to the final point rr
is expanded in terms of scattering events. The first order means that a single volume
element at s’ of the dielectric body scatter each photon

2
GO, r',w) = w—zfdss'G(O)(r,s’,a)) Se(s, )-GO, r',w). (178)
c
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In terms of dispersion forces, this approximation is known as Hamaker approach (pair-
wise summation when r’ — r). The second order considers a further scattering event
inside the dielectric body

242
G(S)(r,r’):((::—z) fdss'dgs"G(o)(r,s’)-68(3’)-G(O)(s’,s”)-68(8")-G(0)(s”,r’). (179)

As illustrated in Fig. 8, the second order of the Born series expansion considers three-
body effects (Axilrod-Teller interactions).

In sec. 2.1.3, we considered the bulk Green function and observed that the Green func-
tion consists of two parts: a regular part R describing the propagation of the photons
and a singular part § leading to the self-energy of the particles. Thus, we can apply a
singularity extraction to the Green function

GO, r,w)=A6(r-r)+R(r,1r',w), (180)

with A = —c?/(3w?) for vacuum. The incoming and outgoing photons, described by the
outer Green functions, are regular. But all remaining Green functions for all orders in-
clude the self-energies when the internal scattering points meet each other. Thus, we
can correct the first order by including the self-energies from the higher orders, leading
to

i

R(r,s,w)-R(s, 7, w). (181)

GO, r,w) = w—zée(w)fdssi w—z/lée
2 ol

The sum can be identified as a geometric series and, thus, can be carried out

-1

0 [ (2 i 2
> w—leée = (1 - [w—z/ws ) , (182)
i=0L € ¢
and yields the local-field corrected Green function
(S)(pe ot ) 3 /
G (r,rw)=—————| d'sR(r,s,0)-R(s, 1, 0), (183)
cc 1+ yw)/3

with y(w) = €(w) — 1.

3.4 Van-der-Waals potential

The van-der-Waals force acts between two polarisable particles. One is located at ry4
with polarisability @ 4 and the other at rz with polarisability . The common proce-
dure to derive the van-der-Waals potential in analogy to the Casimir-Polder potential3.1

would be to apply perturbation theory to the interaction Hamiltonian
Hini=—da-E(ra)—dg-E(rp). (184)

Its first three orders will vanish due to the selection rules; thus, we need to consider the
fourth order of the perturbation series. This yields a very long calculation [5]. Instead,

we can start with the Casimir—Polder potential (150) and consider the scattering at a
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single point rp. Let’s look closely at the coefficient we derived in the previous section in
equation (183)

X (w) _38—1

= , (185)
1+x(w)/3 £+2
which is equivalent to the Clausius—Mossotti relation
e-1 «a
3—=—. (186)
E+2 g
Thus, by considering the scattering at a single point rg, the integral reduces to
2
(S oy W '
G (r,r,w) = ——ag()R(r,rp,w) -R(rp,r,w). (187)
EpC

By plugging this result into the Casimir-Polder potential, we end up with the van-der-
Waals potential

h 2
Usaw(ra, 15) = —% f dEE tr [@alE) - Gra, 15, i6) - p(i®)-Glrp, ra)id)],  (188)

where we used that r4 # rp to include to general Green function. We can interpret this
result again via an exchange of virtual photons. Caused by the ground-state fluctua-
tions of the electromagnetic field, a virtual photon is created at the position of particle
A, which propagates to particle B. Here, it interacts with this particle (a g) before return-
ing to particle A and interacting with it. The sum (integral) of all these virtual photon

exchanges yields the van-der-Waals potential.

3.5 Van-der-Waals interactions in free space

In section 2.1.3, we calculated the free-space Green function. Considering two isotropic
particles, @ p = a4 1, separated by the distance p, then the trace over the remaining

Green functions can be carried out, and the van-der-Waals potential reads

Uvaw(@) = =15~ 2 6fdééba(lcf)ocg(lcf)g((’t ) (189)

with

g(x) = (3+6x+5x* +2x% + x*) e . (190)
Analogously to the Casimir-Polder potential, we can approximate the van-der-Waals
potential concerning the relevant length scale. In the non-retarded limit, where the
separation is much smaller than the relevant wavelength, p <« c/w, the polarisability
restricts the integral to a region where g(¢p/c) = g(0) = 3, leading to the well-known cg

potential

Uvaw(p) = —— Ce = fdfaA(lf)a:B(lé) (191)
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In contrast, for larger separations, the dominant part of the frequency integral is re-
stricted to the electrostatic contributions, and we can carry out the remaining integral

fdfg(é—p) = £fdxg(x) = @E’ (192)
0 ¢ €5 ‘e
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leading to the retarded van-der-Waals potential

C; _ 23nhcasap

U — 193

These results are the simple free-space van-der-Waals potentials. If the particles are
embedded in a dielectric medium, these potentials need to be adapted concerning the
screening effects due to the absorption of photon energy bypassing the medium. The
access (or effective) polarisability models, see Ref. [6], considers a vacuum layer sur-
rounding the particles and compensate for its impact on the exchange of virtual pho-
tons. This is a local-field effect. Considering the interaction between two dissolved par-
ticles, one often speaks about effective screening models; see Ref. [7] for further details.
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